

MITSUBISHI ELECTRIC INVERTER **FR-A700 INSTRUCTION MANUAL (BASIC)** FR-A720-0.4K to 90K FR-A740-0.4K to 500K

Thank you for choosing this Mitsubishi Inverter. This Instruction Manual (Basic) is intended for users who "just want to run the inverter".

CONTENTS

1 OUTLINE	1
2 INSTALLATION AND WIRING	3
3 DRIVING THE MOTOR	50
4 TROUBLESHOOTING	149
5 PRECAUTIONS FOR MAINTENANCE AND	INSPECTION177
6 SPECIFICATIONS	

If you are going to utilize functions and performance, refer to the Instruction Manual (Applied) [IB-0600226ENG]. The Instruction Manual (Applied) is separately available from where you purchased the inverter or your Mitsubishi sales representative.

The PDF version of this manual is also available for download at "MELFANS Web," the Mitsubishi Electric FA network service on the world wide web (URL: http://www.MitsubishiElectric.co.jp/melfansweb)

5

This Instruction Manual (Basic) provides handling information and precautions for use of the equipment. Please forward this Instruction Manual (Basic) to the end user.

This section is specifically about safety matters

Do not attempt to install, operate, maintain or inspect the inverter until you have read through this Instruction Manual (Basic) and appended documents carefully and can use the equipment correctly. Do not use the inverter until you have a full knowledge of the equipment, safety information and instructions. In this Instruction Manual (Basic), the safety instruction levels are classified into "WARNING" and "CAUTION".

WARNING Incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause only material damage.

The **CAUTION** level may even lead to a serious consequence according to conditions. Both instruction levels must be followed because these are important to personal safety.

1. Electric Shock Prevention

WARNING

- · While the inverter power is ON, do not open the front cover or the wiring cover. Do not run the inverter with the front cover or the wiring cover removed. Otherwise you may access the exposed high voltage terminals or the charging part of the circuitry and get an electric shock.
- Even if power is off, do not remove the front cover except for wiring or periodic inspection. You may accidentally touch the charged inverter circuits and get an electric shock.
- Before wiring, inspection or switching EMC filter ON/OFF connector, power must be switched OFF. To confirm that, LED indication of the operation panel must be checked. (It must be OFF.) Any person who is involved in wiring, inspection or switching EMC filter ON/OFF connector shall wait for at least 10 minutes after the power supply has been switched OFF and check that there are no residual voltage using a tester or the like. The capacitor is charged with high voltage for some time after power OFF, and it is dangerous.
- This inverter must be earthed (grounded). Earthing (grounding) must conform to the requirements of national and local safety regulations and electrical code (NEC section 250, IEC 536 class 1 and other applicable standards). A neutral-point earthed (grounded) power supply for 400V

class inverter in compliance with EN standard must be used.

- Any person who is involved in wiring or inspection of this equipment shall be fully competent to do the work.
- The inverter must be installed before wiring. Otherwise you may get an electric shock or be injured.
- Setting dial and key operations must be performed with dry hands to prevent an electric shock.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching.
- · Do not replace the cooling fan while power is on. It is dangerous to replace the cooling fan while power is on.
- Do not touch the printed circuit board or handle the cables with wet hands. Otherwise you may get an electric shock.
- When measuring the main circuit capacitor capacity (Pr. 259 Main circuit capacitor life measuring = "1"), the DC voltage is applied to the motor for 1s at powering OFF. Never touch the motor terminal, etc. right after powering OFF to prevent an electric shock.
- IPM motor is a synchronous motor with high-performance magnets embedded in the rotor. Motor terminals hold highvoltage while the motor is running even after the inverter power is turned OFF. Before wiring or inspection, the motor must be confirmed to be stopped. When the motor is driven by the load in applications such as fan and blower, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise you may get an electric shock.

2. Fire Prevention

ACAUTION

- · Inverter must be installed on a nonflammable wall without holes (so that nobody touches the inverter heatsink on the rear side, etc.). Mounting it to or near flammable material can cause a fire.
- If the inverter has become faulty, the inverter power must be switched OFF. A continuous flow of large current could cause a fire.
- When using a brake resistor, a sequence that will turn OFF power when a fault signal is output must be configured. Otherwise the brake resistor may overheat due to damage of the brake transistor and possibly cause a fire.
- Do not connect a resistor directly to the DC terminals P/+ and N/-. Doing so could cause a fire.
- · Daily and periodic inspections must be performed as instructed in the Instruction Manual. If the product is used without receiving any inspection, it may cause a burst, break, or fire.

3. Injury Prevention

ACAUTION

- The voltage applied to each terminal must be the ones specified in the Instruction Manual. Otherwise burst, damage, etc. may occur.
- The cables must be connected to the correct terminals. Otherwise burst, damage, etc. may occur.
- Polarity must be correct. Otherwise burst, damage, etc. may occur.
- While power is ON or for some time after power-OFF, do not touch the inverter since the inverter will be extremely hot. Doing so can cause burns.

4. Additional Instructions

Also the following points must be noted to prevent an accidental failure, injury, electric shock etc

(1) Transportation and installation

- The product must be transported in correct method that corresponds to the weight. Failure to do so may lead to injuries.
- Do not stack the boxes containing inverters higher than the number recommended.
- The product must be installed to the position where withstands the weight of the product according to the information in the Instruction Manual.
- Do not install or operate the inverter if it is damaged or has parts missing. This can result in breakdowns.
- When carrying the inverter, do not hold it by the front cover or setting dial; it may fall off or fail.
- Do not stand or rest heavy objects on the product.
- The inverter mounting orientation must be correct.
- Foreign conductive objects must be prevented from entering the inverter. That includes screws and metal fragments or other flammable substance such as oil.
- As the inverter is a precision instrument, do not drop or subject it to impact.
- The inverter must be used under the following environment: Otherwise the inverter may be damaged.

t	Surrounding air temperature	-10°C to +50°C (non-freezing)	
eD	Ambient humidity	90% RH or less (non-condensing)	
Ĕ	Storage temperature	-20°C to +65°C *1	
Environ	Atmosphere	Indoors (free from corrosive gas, flammable gas, oil mist, dust and dirt)	
		Maximum 1000m above sea level for	
	Altitude, vibration	standard operation. 5.9m/s ² *2 or less at 10 to 55Hz (directions of X, Y, Z axes)	

*1 Temperature applicable for a short time, e.g. in transit.

*2 2.9m/s² or less for the 160K or higher.
If halogen-based materials (fluorine, chlorine, bromine, iodine, etc.) infiltrate into a Mitsubishi product, the product will be damaged. Halogen-based materials are often included in fumigant, which is used to sterilize or disinfest wooden packages. When packaging, prevent residual fumigant components from being infiltrated into Mitsubishi products, or use an alternative sterilization or disinfection method (heat disinfection, etc.) for packaging. Sterilization of disinfection of wooden package should also be performed before packaging the product.

- Do not install a power factor correction capacitor, surge suppressor or radio noise filter on the inverter output side. These devices on the inverter output side may be overheated or burn out.
- The connection orientation of the output cables U, V, W to the motor affects the rotation direction of the motor.
- IPM motor terminals (U, V, W) hold high-voltage while the IPM motor is running even after the power is turned OFF. Before wiring, the IPM motor must be confirmed to be stopped. Otherwise you may get an electric shock.
- Never connect an IPM motor to the commercial power supply. Applying the commercial power supply to input terminals (U, V, W) of an IPM motor will burn the IPM motor. The IPM motor must be connected with the output terminals (U, V, W) of the inverter.

(3) Test operation and adjustment **CAUTION**

(4) Operation

(2) Wiring

 Before starting operation, each parameter must be confirmed and adjusted. A failure to do so may cause some machines to make unexpected motions.

AWARNING

- The IPM motor capacity must be the same or the one rank lower than the inverter capacity.
- Do not use multiple IPM motors with one inverter.
- Any person must stay away from the equipment when the retry function is set as it will restart suddenly after trip.
- Since pressing key may not stop output depending on the function setting status, separate circuit and switch that make an emergency stop (power OFF, mechanical brake operation for emergency stop, etc.) must be provided.
- OFF status of the start signal must be confirmed before resetting the inverter fault. Resetting inverter alarm with the start signal ON restarts the motor suddenly.
- Do not use an IPM motor in an application where a motor is driven by its load and runs at a speed higher than the maximum motor speed.
- An IPM motor must be used under PM sensorless vector control. Do not use a synchronous motor, induction motor, or synchronous induction motor under PM sensorless vector control.
- The inverter must be used for three-phase induction motors or IPM motors.

Connection of any other electrical equipment to the inverter output may damage the equipment.

- Performing pre-excitation (LX signal and X13 signal) under torque control (Real sensorless vector control) may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may also run at a low speed when the speed limit value = 0 with a start command input. It must be confirmed that the motor running will not cause any safety problem before performing pre-excitation.
- Do not modify the equipment.
- Do not perform parts removal which is not instructed in this manual. Doing so may lead to fault or damage of the inverter.

ACAUTION

- The electronic thermal relay function does not guarantee protection of the motor from overheating. It is recommended to install both an external thermal and PTC thermistor for overheat protection.
- Do not use a magnetic contactor on the inverter input for frequent starting/stopping of the inverter. Otherwise the life of the inverter decreases.
- The effect of electromagnetic interference must be reduced by using a noise filter or by other means. Otherwise nearby electronic equipment may be affected.
- Appropriate measures must be taken to suppress harmonics. Otherwise power supply harmonics from the inverter may heat/ damage the power factor correction capacitor and generator.
- When driving a 400V class motor by the inverter, the motor must be an insulation-enhanced motor or measures must be taken to suppress surge voltage. Surge voltage attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor.
- When parameter clear or all parameter clear is performed, the required parameters must be set again before starting operations because all parameters return to the initial value.
- The inverter can be easily set for high-speed operation. Before changing its setting, the performances of the motor and machine must be fully examined.
- Stop status cannot be held by the inverter's brake function. In addition to the inverter's brake function, a holding device must be installed to ensure safety.
- Before running an inverter which had been stored for a long period, inspection and test operation must be performed.
- Static electricity in your body must be discharged before you touch the product. Otherwise the product may be damaged.
- Do not connect an IPM motor under the induction motor control settings (initial settings). Do not use an induction motor under the PM sensorless vector control settings. Doing so will cause a failure.
- In the system with an IPM motor, the inverter power must be turned ON before closing the contacts of the contactor at the output side.

(5) Emergency stop **A** CAUTION

- A safety backup such as an emergency brake must be provided to prevent hazardous condition to the machine and equipment in case of inverter failure.
- When the breaker on the inverter input side trips, the wiring must be checked for fault (short circuit), and internal parts of the inverter for a damage, etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.
- When any protective function is activated, appropriate corrective action must be taken, and the inverter must be reset before resuming operation.

(6) Maintenance, inspection and parts replacement

• Do not carry out a megger (insulation resistance) test on the control circuit of the inverter. It will cause a failure.

(7) Disposing of the inverter

CAUTION
 The inverter must be treated as industrial waste.

General instructions

Many of the diagrams and drawings in this Instruction Manual (Basic) show the inverter without a cover or partially open for explanation. Never operate the inverter in this manner. The cover must be always reinstalled and the instruction in this Instruction Manual (Basic) must be followed when operating the inverter.

For more details on an IPM motor, refer to the Instruction Manual of the IPM motor.

- CONTENTS —

Product checking and parts identification1

I

50

CONTENTS

2 INSTALLATION AND WIRING

1

1.1 1.2 OUTLINE

_

2.1	Peripheral devices	4
2.2	Method of removal and reinstallation of the front cover	6
2.3	Installation of the inverter and instructions	8
2.4	Wiring	9
2.4.	1 Terminal connection diagram	9
2.4.	2 EMC filter	10
2.4.	3 Specification of main circuit terminal	11
2.4.	4 Terminal arrangement of the main circuit terminal, power supply and the motor wiring	11
2.4.	5 Control circuit terminals	19
2.4.	6 Changing the control logic	22
2.4.	7 Wiring of control circuit	24
2.4.	8 Wiring instructions	24
2.4.		
	on the enclosure surface	25
2.4.		
2.4.	11 Communication operation	26
2.4.	12 USB connector	27
2.4.	13 Connection of motor with encoder (vector control)	28
2.5	Connection of stand-alone option units	35
2.5.	1 Connection of the dedicated external brake resistor (FR-ABR)	35
2.5.		
2.5.	3 Connection of the brake unit (FR-BU/MT-BU5)	39
2.5.	4 Connection of the brake unit (BU type)	41
2.5.		
2.5.		
2.5.	7 Connection of power regeneration converter (MT-RC)	44
2.5.		
2.6	Power-off and magnetic contactor (MC)	46
2.7	Precautions for use of the inverter	47
2.8	Failsafe of the system which uses the inverter	49

3 DRIVING THE MOTOR

0	peration panel (FR-DU07)	
1.1	Parts of the operation panel (FR-DU07)	
1.4	Monitoring of output current and output voltage	
1.5	First priority monitor	
1.6	Displaying the set frequency	53
	1.1 1.2 1.3 1.4 1.5	Operation panel (FR-DU07) 1.1 Parts of the operation panel (FR-DU07) 1.2 Basic operation (factory setting) 1.3 Operation lock (Press [MODE] for an extended time (2s)) 1.4 Monitoring of output current and output voltage 1.5 First priority monitor 1.6 Displaying the set frequency

1

(at 20mA, Parameter I
TROUBLE
Reset meth List of fault Causes and Correspond Check and

II

3.1.7 3.1.8

3.1.9	Parameter copy and parameter verification	56
3.2 Be	efore operation	58
3.2.1	Simple mode parameter list	
3.2.2	Overheat protection of the motor by the inverter (Pr. 9)	
3.2.3	When the rated motor frequency is 50Hz (Pr. 3)	
3.2.4	Increasing the starting torque (Pr. 0)	
3.2.5	Limiting the maximum and minimum output frequency (Pr. 1, Pr. 2)	
3.2.6	Changing acceleration and deceleration time (Pr. 7, Pr. 8)	
3.2.7	Energy saving operation for fans and pumps (Pr. 14, Pr. 60)	
3.2.8	Selection of the start command and frequency command locations (Pr. 79)	63
3.2.9	Acquiring large starting torque and low speed torque (Advanced magnetic flux vector control, Real sensorless vector control) (Pr. 71, Pr. 80, Pr. 81, Pr. 83, Pr. 84, Pr. 800)	
3.2.10	Higher accuracy operation using a motor with encoder (Vector control) (Pr.71, Pr.80, Pr.81, Pr.83, Pr.84, Pr.359, Pr.369, Pr.800)	
3.2.11	Performing high-accuracy operation and saving energy at the same time (PM sensorless vector control) (IPM, Pr. 998)	
3.2.12	Exhibiting the best performance of the motor performance (offline auto tuning) (Pr.1, Pr.9, Pr.18, Pr.71, Pr.80, Pr.81, Pr.83, Pr.84, Pr.96, Pr.707, Pr.724, Pr.725)	
3.2.13	High accuracy operation unaffected by the motor temperature (online auto tuning) (Pr. 95)	83
3.2.14	To perform high accuracy/fast response operation (gain adjustment of Real sensorless vector control, vector control and PM sensorless vector control) (Pr. 818 to Pr. 821, Pr. 880)	
3.2.15	Troubleshooting during speed control	
	art/stop using the operation panel (PU operation)	
3.3.1	Setting the frequency to operate (example: performing operation at 30Hz)	
3.3.2	Using the setting dial like a potentiometer to perform operation	
3.3.3	Setting the frequency by switches (multi-speed setting)	
3.3.4	Setting the frequency by analog input (voltage input)	
3.3.5	Setting the frequency by analog input (current input)	94
3.4 St	art and stop using terminals (External operation)	95
3.4.1	Setting the frequency by the operation panel (Pr. 79 = 3)	
3.4.2	Setting the frequency by switches (multi-speed setting) (Pr. 4 to Pr. 6)	
3.4.3 3.4.4	Setting the frequency by analog input (voltage input) Changing the output frequency (60Hz, initial value) at the maximum voltage	
	input (5V, initial value)	
3.4.5	Setting the frequency by analog input (current input)	
3.4.6	Changing the output frequency (60Hz, initial value) at the maximum current input (at 20mA, initial value)	
3.5 Pa	arameter List	101

4 TROUBLESHOOTING

4.1	Reset method of protective function	149
4.2	List of fault or alarm display	150
4.3	Causes and corrective actions	151
4.4	Correspondences between digital and actual characters	166
4.5	Check and clear of the faults history	167

5 PRECAUTIONS FOR MAINTENANCE AND INSPECTION

5.1	In	spection item	
5.1	1.1	Daily inspection	
		Periodic inspection	
5.1	1.3	Daily and periodic inspection	
		Display of the life of the inverter parts	
		Cleaning	

 Motor rotates in the opposite direction
 172

 Speed greatly differs from the setting
 172

6	SPECIFICATIONS
---	-----------------------

4.6

4.6.1

4.6.2

4.6.3

4.6.4 4.6.5

4.6.6 4.6.7

4.6.8

4.6.9

4.6.11

4.6.12

4.6.13

5.1.6

5.1.7

6.1	Inve	rter rating	185
6.2	Motor rating		
6.3	Com	nmon specifications	191
6.4	6.4 Outline dimension drawings		192
		nverter outline dimension drawings	
6.4	.2 D	Dedicated motor outline dimension drawings	199
6.5	Hea	tsink protrusion attachment procedure	205
6.5		Vhen using a heatsink protrusion attachment (FR-A7CN)	
6.5	.2 P	Protrusion of heatsink of the FR-A740-160K or higher	205

APPENDICES

Appendix 1 For customers who are replacing the older model with	
this inverter	207
Appendix 1-1 Replacement of the FR-A500 series	207
Appendix 1-2 Replacement of the FR-A200 <excellent> series</excellent>	208
Appendix 2 Specification comparisons between the PM sensorless vector cor	trol and the
induction motor control	209

185

177

Appendix 3	Instructions for UL and cUL compliance	210
Appendix 4	Instructions for compliance with the EU Directives	213

<Abbreviations>

- · DU: Operation panel (FR-DU07)
- PU: Operation panel (FR-DU07) and parameter unit (FR-PU04, FR-PU07)
- Inverter: Mitsubishi inverter FR-A700 series
- FR-A700: Mitsubishi inverter FR-A700 series
- Pr.: Parameter Number (Number assigned to function)
- PU operation: Operation using the PU (FR-DU07/FR-PU04/FR-PU07).
- · External operation: Operation using the control circuit signals
- Combined operation: Combined operation using the PU (FR-DU07/FR-PU04/FR-PU07) and external operation
- Standard motor: SF-JR
- Constant-torque motor: SF-HRCA
- · Vector control dedicated motor: SF-V5RU

The following marks are used to indicate the controls as below. (Parameters without any mark are valid for all control)

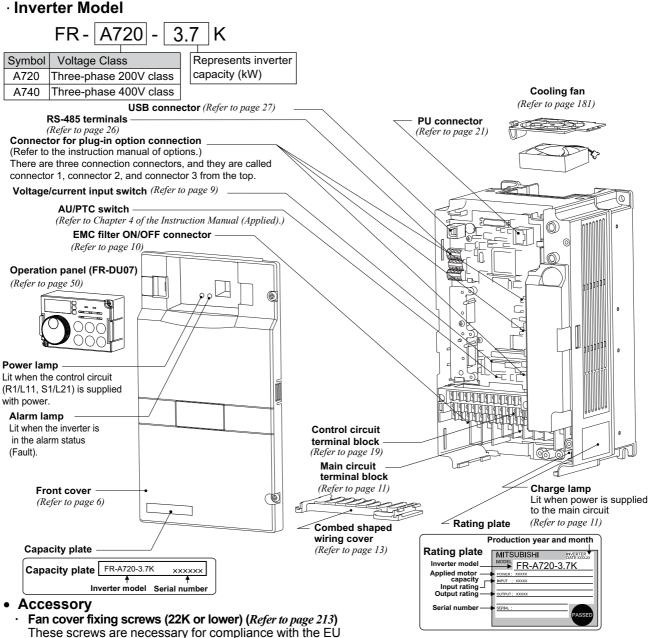
Mark	Control method	Applied motor	
V/F	V/F control		
Magnetic flux	Advanced magnetic flux vector control	Three-phase induction motor	
Sensorless	Real sensorless vector control		
Vector	Vector control		
PM	PM sensorless vector control	IPM motor	

<Trademarks>

- · LONWORKS[®] is registered trademarks of Echelon Corporation in the U.S.A. and other countries.
- · DeviceNet is a registered trademark of ODVA (Open DeviceNet Vender Association, Inc.).
- · Company and product names herein are the trademarks and registered trademarks of their respective owners.

<Notes on descriptions in this Instruction Manual>

• Connection diagrams in this Instruction Manual appear with the control logic of the input terminals as sink logic, unless otherwise specified. (For the control logic, refer to *page 22*.)


Harmonic Suppression Guideline

All models of general-purpose inverters used by specific consumers are covered by the "Harmonic Suppression Guideline for Consumers Who Receive High Voltage or Special High Voltage". (For further details, refer to Chapter 3 of the Instruction Manual (Applied))

1 OUTLINE

1.1 Product checking and parts identification

Unpack the inverter and check the capacity plate on the front cover and the rating plate on the inverter side face to ensure that the product agrees with your order and the inverter is intact.

Directive.

С	apacity	Screw Size (mm)	Quantity
	1.5K to 3.7K	$M3 \times 35$	1
200V	5.5K to 11K	M4 imes 40	2
	15K to 22K	$M4 \times 50$	1
	2.2K, 3.7K	M3 imes 35	1
400V	5.5K to 15K	$M4 \times 40$	2
	18.5K, 22K	$M4 \times 50$	1

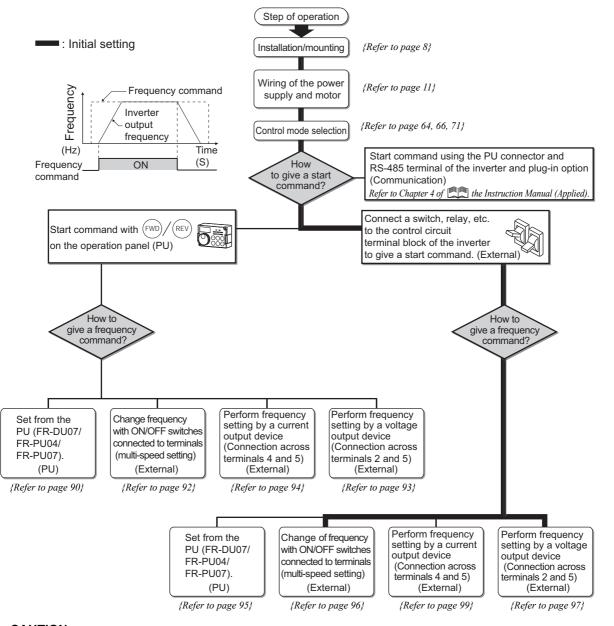
REMARKS

• For removal and reinstallation of covers, refer to page 6.

How to read SERIAL Rating plate example

ating plat	e exam	ple	
	0	0	000000
Symbol	Year	Month	Control number
		SERIAL	

DC reactor supplied (75K or higher)
 Eyebolt for hanging the inverter (30K to 280K)
 Canacity Evebolt Size Quantity

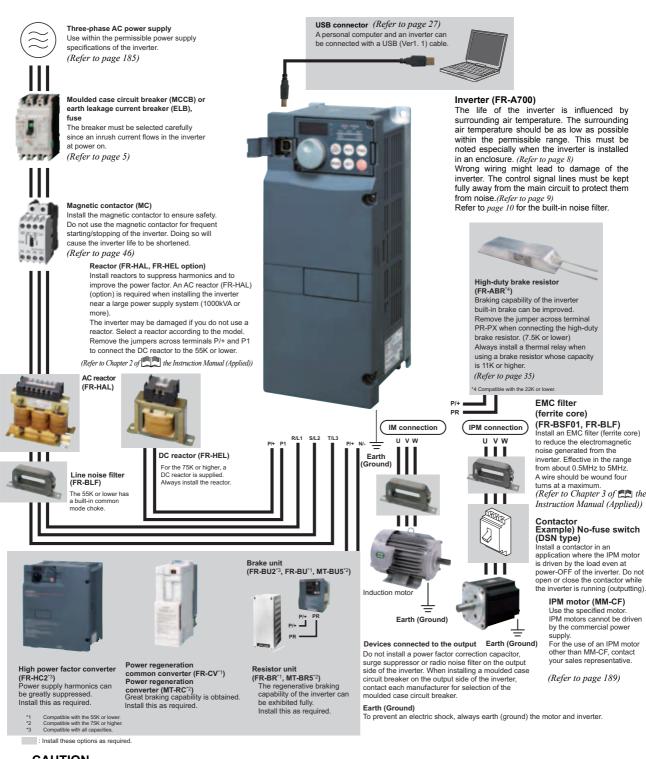

Capacity	Eyebolt Size	Quantity	Error
30K	M8	2	. п
37K to 132K	M10	2	/ 800)
160K to 280K	M12	2	

The SERIAL consists of one symbol, two characters indicating production year and month, and six characters indicating control number. The last digit of the production year is indicated as the Year, and the Month is indicated by 1 to 9

The last digit of the production year is indicated as the Year, and the Month is indicated by 1 to 9, X (October), Y (November), or Z (December.)

The inverter needs frequency command and start command. Frequency command (set frequency) determines the rotation speed of the motor. Turning ON the start command starts the motor to rotate. Refer to the flow chart below to perform setting.

CAUTION


Check the following items before powering on the inverter.

- Check that the inverter is installed correctly in a correct place. (Refer to page 8)
- Check that wiring is correct. (Refer to page 9)
- Check that no load is connected to the motor.

<u>When the rated motor frequency under V/F control is 50Hz, set the Pr.3 Base frequency. (Refer to page 59)</u>

When protecting the motor from overheat by the inverter, set Pr.9 Electronic thermal O/L relay (Refer to page 59)

= CAUTION =

Do not install a power factor correction capacitor, surge suppressor or radio noise filter on the inverter output side. This will cause the inverter to trip or the capacitor, and surge suppressor to be damaged. If any of the above devices are connected, immediately remove them. Electromagnetic wave interference

The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. In this case, set the EMC filter valid to minimize interference. (Refer to Chapter 2 of 🕮 the Instruction Manual (Applied))

- Refer to the instruction manual of each option and peripheral devices for details of peripheral devices.
- An IPM motor cannot be driven by the commercial power supply. An IPM motor is a motor with permanent magnets embedded inside. High-voltage is generated at motor terminals while the motor is running even after the inverter power is turned OFF. Before closing the contactor at the output side, make sure that the inverter power is ON and the motor is stopped.

Check the inverter model of the inverter you purchased. Appropriate peripheral devices must be selected according to the capacity. Refer to the following list and prepare appropriate peripheral devices: **200V class**

Motor Output (kW)	Applicable Inverter Model	(MCCB) ∗₂ c Circuit E (NF c	se Circuit Breaker or Earth Leakage Breaker (ELB) or NV type)	Input Side Magnetic Contactor 3		
*1			ctor improving DC) reactor		tor improving DC) reactor	
		without	with	without	with	
0.4	FR-A720-0.4K	5A	5A	S-T10	S-T10	
0.75	FR-A720-0.75K	10A	10A	S-T10	S-T10	
1.5	FR-A720-1.5K	15A	15A	S-T10	S-T10	
2.2	FR-A720-2.2K	20A	15A	S-T10	S-T10	
3.7	FR-A720-3.7K	30A	30A	S-T21	S-T10	
5.5	FR-A720-5.5K	50A	40A	S-N25	S-T21	
7.5	FR-A720-7.5K	60A	50A	S-N25	S-N25	
11	FR-A720-11K	75A	75A	S-N35	S-N35	
15	FR-A720-15K	125A	100A	S-N50	S-N50	
18.5	FR-A720-18.5K	150A	125A	S-N65	S-N50	
22	FR-A720-22K	175A	150A	S-N80	S-N65	
30	FR-A720-30K	225A	175A	S-N95	S-N80	
37	FR-A720-37K	250A	225A	S-N150	S-N125	
45	FR-A720-45K	300A	300A	S-N180	S-N150	
55	FR-A720-55K	400A	350A	S-N220	S-N180	
75	FR-A720-75K	—	400A	—	S-N300	
90	FR-A720-90K		400A		S-N300	

*1 Motor Output (kW) in the above table indicates values when using the IPM motor MM-CF or the Mitsubishi 4-pole standard motor with power supply voltage of 200VAC 50Hz.

(M)

(м)

*2 Select the MCCB according to the power supply capacity. Install one MCCB per inverter. For installation in the United States or Canada, select a fuse in accordance with UL, cUL, the National — - <u>MCCB</u> <u>INV</u> Electrical Code and any applicable local codes, or use UL 489 Molded Case Circuit Breaker (MCCB). (*Refer to page 210.*)

*3 Magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stop during motor driving, the electrical durability is 25 times. If using an MC for emergency stop during motor driving, select an MC regarding the inverter input side current as JEM1038-AC-3 class rated current. When using an MC on the inverter output side for commercial-power supply operation switching using a general-purpose motor, select an MC regarding the rated motor current as JEM1038-AC-3 class rated current.

= CAUTION =

• When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter model and cable and reactor according to the motor output.

• When the breaker on the inverter primary side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter, etc. Identify the cause of the trip, then remove the cause and power on the breaker.

400V class

Motor Output (kW)	Applicable Inverter Model	(MCCB) ∗₂ or Circuit B	e Circuit Breaker · Earth Leakage reaker (ELB) · NV type)	Input Side Mag	netic Contactor∗₃	
*1			tor improving DC) reactor	Power factor improving (AC or DC) reactor		
		without	with	without	with	
0.4	FR-A740-0.4K	5A	5A	S-T10	S-T10	
0.75	FR-A740-0.75K	5A	5A	S-T10	S-T10	
1.5	FR-A740-1.5K	10A	10A	S-T10	S-T10	
2.2	FR-A740-2.2K	10A	10A	S-T10	S-T10	
3.7	FR-A740-3.7K	20A	15A	S-T10	S-T10	
5.5	FR-A740-5.5K	30A	20A	S-T21	S-T12	
7.5	FR-A740-7.5K	30A	30A	S-T21	S-T21	
11	FR-A740-11K	50A	40A	S-T21	S-T21	
15	FR-A740-15K	60A	50A	S-N25	S-T21	
18.5	FR-A740-18.5K	75A	60A	S-N25	S-N25	
22	FR-A740-22K	100A	75A	S-N35	S-N25	
30	FR-A740-30K	125A	100A	S-N50	S-N50	
37	FR-A740-37K	150A	125A	S-N65	S-N50	
45	FR-A740-45K	175A	150A	S-N80	S-N65	
55	FR-A740-55K	200A	175A	S-N80	S-N80	
75	FR-A740-75K	—	225A	_	S-N95	
90	FR-A740-90K		225A		S-N150	
110	FR-A740-110K		225A		S-N180	
132	FR-A740-132K		400A		S-N220	
160	FR-A740-160K		400A		S-N300	
185	FR-A740-185K		400A		S-N300	
220	FR-A740-220K	_	500A	_	S-N400	
250	FR-A740-250K	_	600A		S-N600	
280	FR-A740-280K	—	600A	—	S-N600	
315	FR-A740-315K	_	700A	_	S-N600	
355	FR-A740-355K	— —	800A	_	S-N600	
400	FR-A740-400K	— —	900A	_	S-N800	
450	FR-A740-450K		1000A		1000A Rated product	
500	FR-A740-500K	_	1200A	_	1000A Rated product	

*1 Motor Output (kW) in the above table indicates values when using the Mitsubishi 4-pole standard motor with power supply voltage of 400VAC 50Hz.

*2 Select the MCCB according to the power supply capacity. Install one MCCB per inverter. For installation in the United States or Canada, select a fuse in accordance with UL, cUL, the National Electrical Code and any applicable local codes, or use UL 489 Molded Case Circuit Breaker (MCCB). (*Refer to page 210.*)

*3 Magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stop during motor driving, the electrical durability is 25 times. If using an MC for emergency stop during motor driving, select an MC regarding the inverter input side current as JEM1038-AC-3 class rated current. When using an MC on the inverter output side for commercial-power supply operation switching using a general-purpose motor, select an MC regarding the rated motor current as JEM1038-AC-3 class rated current.

= CAUTION =

 When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter model, and select cable and reactor according to the motor output.

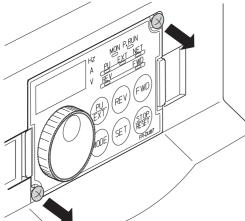
• When the breaker on the inverter primary side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter, etc. Identify the cause of the trip, then remove the cause and power on the breaker.

(M)

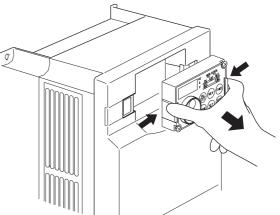
(M)

INV

INV

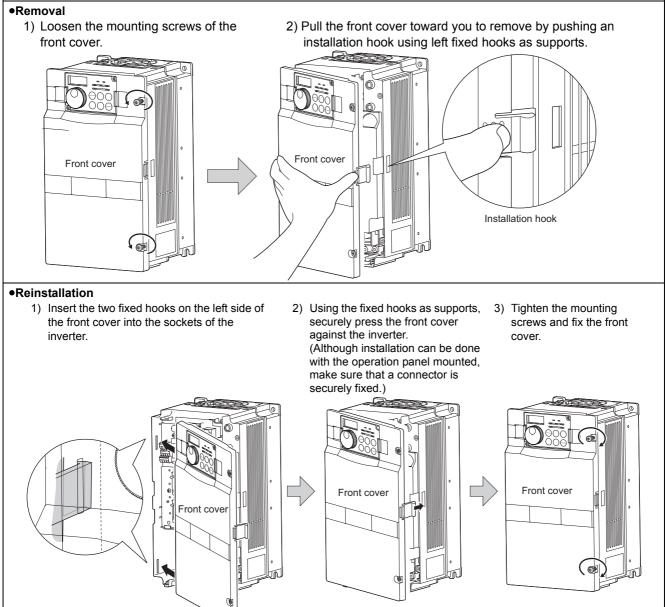

MCCB

MCCB


2.2 Method of removal and reinstallation of the front cover

•Removal of the operation panel

1) Loosen the two screws on the operation panel. (These screws cannot be removed.)



2) Push the left and right hooks of the operation panel and pull the operation panel toward you to remove.

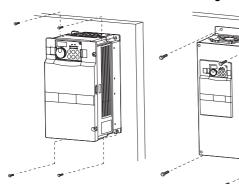
When reinstalling the operation panel, insert it straight to reinstall securely and tighten the fixed screws of the operation panel. (Tightening torque: 0.40N·m to 0.45N·m)

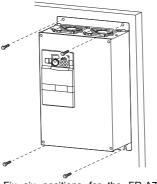
22K or lower

30K or higher Removal 1) Remove mounting screws on the 2) Loosen the mounting 3) Pull the front cover 2 toward you to remove front cover 1 to remove the front screws of the front cover 2. by pushing an installation hook on the right side using left fixed hooks as supports. cover 1. uo. R Installation hook Front cover 1 Front cover 2 Reinstallation 1) Insert the two fixed hooks on the left side of the 2) Using the fixed hooks as supports, securely press the front cover 2 into the sockets of the inverter. front cover 2 against the inverter. (Although installation can be done with the operation panel mounted, make sure that a connector is securely fixed.) Front cover 2 Front cover 2 3) Fix the front cover 2 with the mounting screws. 4) Fix the front cover 1 with the mounting screws. HIU F R щO P Front cover 1 Front cover 2 H REMARKS For the FR-A720-55K and the FR-A740-160K or higher, the front cover 1 is separated into two parts.

- CAUTION

- Fully make sure that the front cover has been reinstalled securely. Always tighten the mounting screws of the front cover.
 The same serial number is printed on the capacity plate of the front cover and the rating plate of the inverter. Before
- 2. The same serial number is printed on the capacity plate of the front cover and the rating plate of the inverter. Before reinstalling the front cover, check the serial numbers to ensure that the cover removed is reinstalled to the inverter from where it was removed.

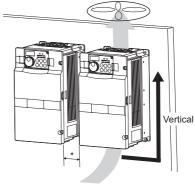

2

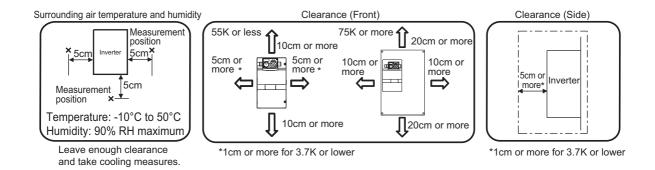

NSTALLATION AND WIRING

2.3 Installation of the inverter and instructions

Installation of the Inverter

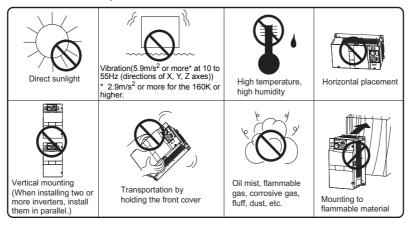
Installation on the enclosure 0.4K to 22K 30K or higher

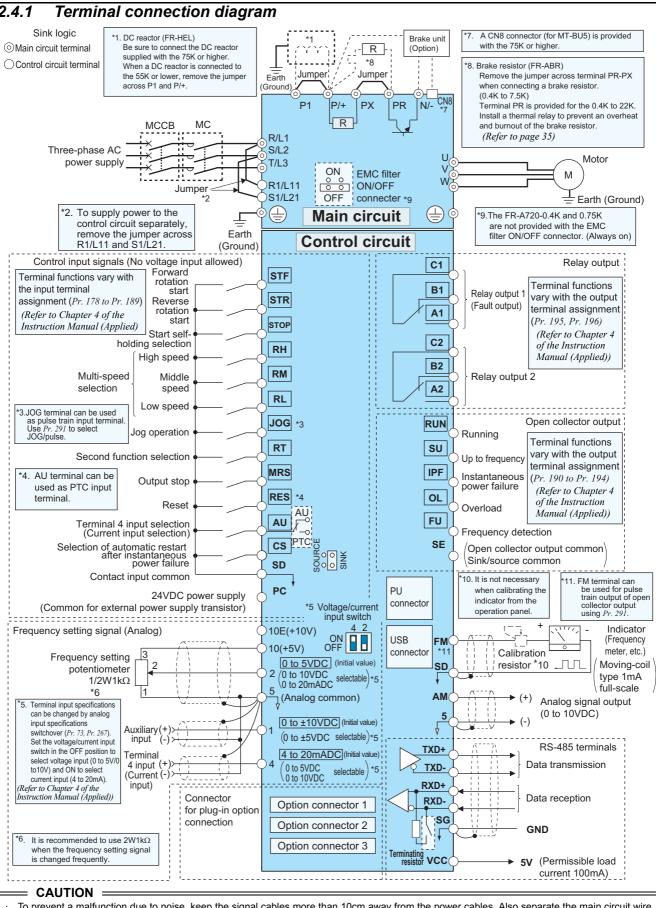



Fix six positions for the FR-A740-160K to 355K and fix eight positions for the FR-A740-400K to 500K.

• Install the inverter under the following conditions.

- $\cdot\,$ When encasing multiple inverters, install them in parallel as a cooling measure.
- · Install the inverter vertically.


* Refer to the clearance below.


REMARKS

For replacing the cooling fan of the FR-A740-160K or higher, 30cm of space is necessary in front of the inverter. Refer to *page 181* for fan replacement.

• The inverter consists of precision mechanical and electronic parts. Never install or handle it in any of the following conditions as doing so could cause an operation fault or failure.

2.4 Wiring

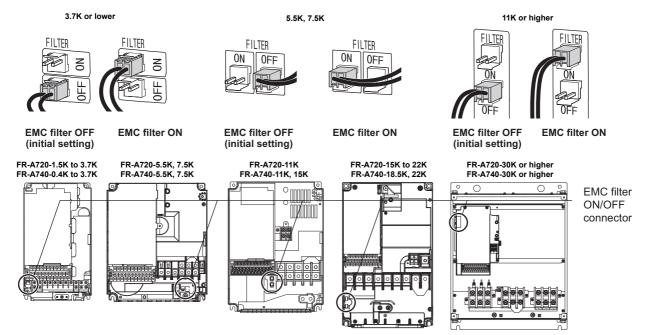
To prevent a malfunction due to noise, keep the signal cables more than 10cm away from the power cables. Also separate the main circuit wire of the input side and the output side.
 After wiring, wire offcuts must not be left in the inverter. Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean.

After winning, whe oncurs must not be left in the inverter. Whe oncurs can cause an alarm, failure or manufaction. Always keep the inverter of When drilling mounting holes in an enclosure etc., take care not to allow chips and other foreign matter to enter the inverter.
 Set the voltage/current input switch correctly. Different setting may cause a fault, failure or malfunction.

NSTALLATION AND WIRING

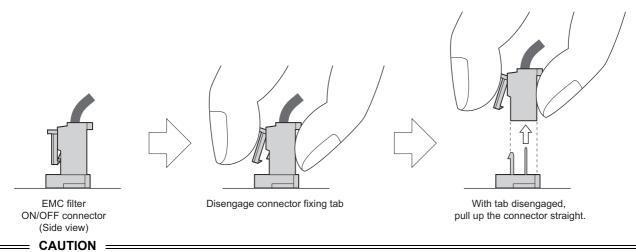
Wiring

2.4.2 EMC filter


This inverter is equipped with a built-in EMC filter (capacitive filter) and common mode choke.

Effective for reduction of air-propagated noise on the input side of the inverter.

The EMC filter is factory-set to disable (OFF).


To enable it, fit the EMC filter ON/OFF connector to the ON position.

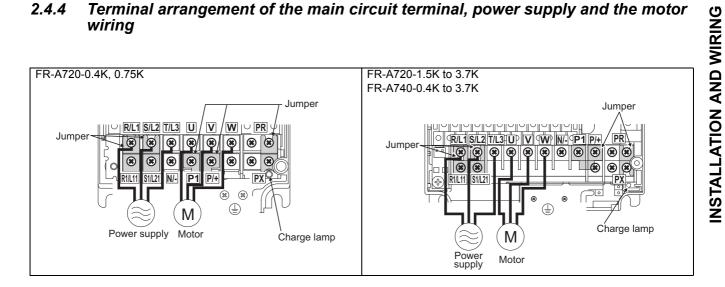
The input side common mode choke, built-in the 55K or lower inverter, is always valid regardless of on/off of the EMC filter on/off connector.

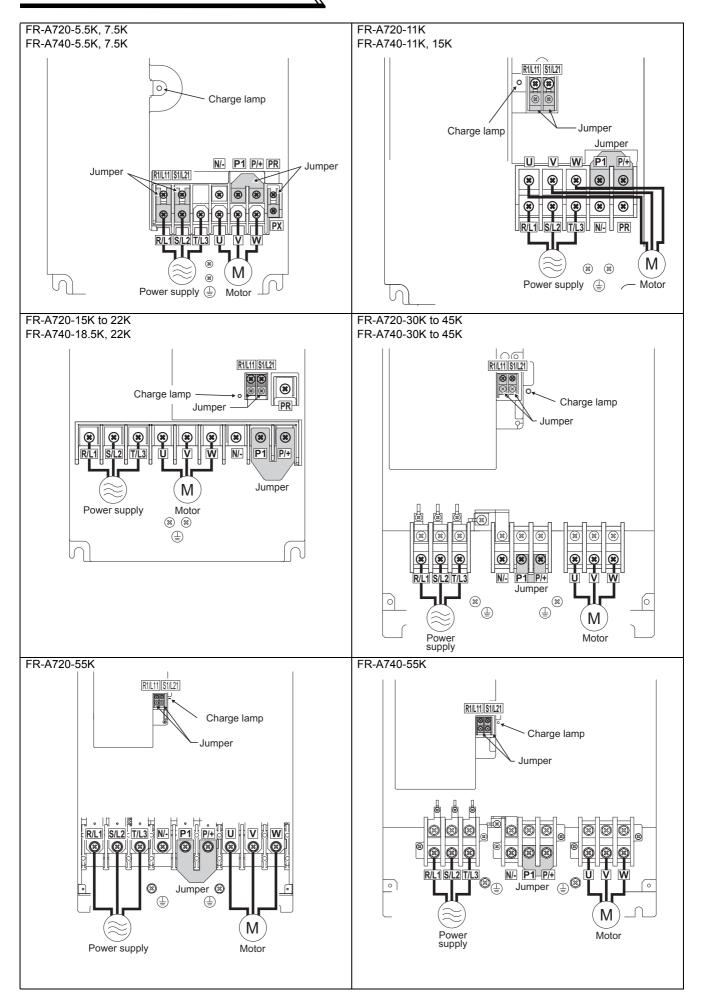
The FR-A720-0.4K and 0.75K are not provided with the EMC filter ON/OFF connector. (The EMC filter is always valid.) **<How to disconnect the connector>**

- (1) Before removing a front cover, check to make sure that the indication of the inverter operation panel is OFF, wait for at least 10 minutes after the power supply has been switched OFF, and check that there are no residual voltage using a tester or the like. (*Refer to page 6.*)
- (2) When disconnecting the connector, push the fixing tab and pull the connector straight without pulling the cable or forcibly pulling the connector with the tab fixed. When installing the connector, also engage the fixing tab securely. If it is difficult to disconnect the connector, use a pair of long-nose pliers, etc.

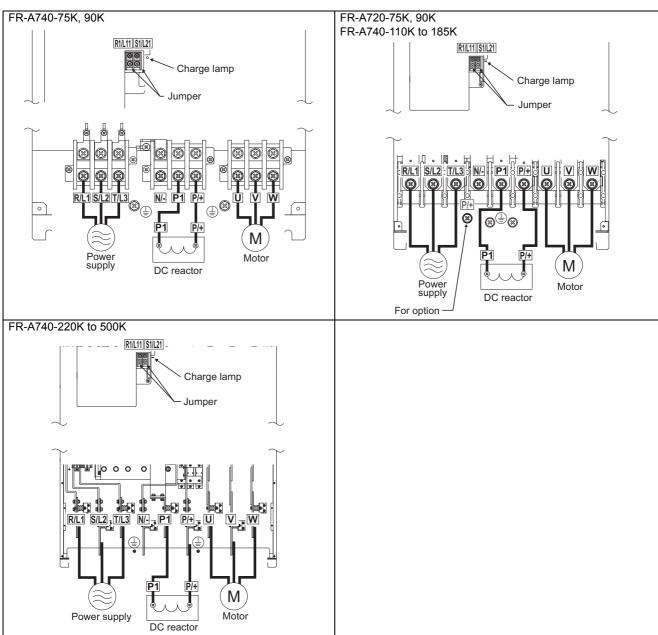
- · Fit the connector to either ON or OFF.
- Enabling (turning on) the EMC filter increases leakage current. (*Refer to Chapter 3 of* the Instruction Manual (Applied))

🖄 While power is ON or when the inverter is running, do not open the front cover. Otherwise you may get an electric shock.

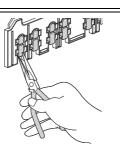

Terminal Symbol	Terminal Name		Des	cription		Refer to page		
R/L1, S/L2, T/L3	AC power input	Keep these te	Connect to the commercial power supply. Keep these terminals open when using the high power factor converter (FR- HC2) or power regeneration common converter (FR-CV).					
U, V, W	Inverter output		ee-phase squirrel-cage			—		
R1/L11, S1/L21	Power supply for control circuit	fault display a (FR-HC2) or p jumpers from power to these The power ca	the AC power supply to nd fault output or when ower regeneration con- terminals R/L1-R1/L11 e terminals. pacity necessary when 21 differs according to	n using the high po mmon converter (f and S/L2-S1/L21 n separate power i	ower factor converter FR-CV), remove the and apply external s supplied from R1/	17		
			11K or lower	15K	18.5K or higher			
		200V class	60VA	80VA	80VA			
		400V class	60VA	60VA	80VA			
P/+, PR	Brake resistor connection (22K or lower)	optional brake	umper from terminals F resistor (FR-ABR) ac lower, connecting the	ross terminals P/+	-PŔ.	35		
P/+, N/-	Brake unit connection	regeneration of	rake unit (FR-BU2, FF common converter (FF power factor converte g mode).	R-CV), power rege	neration converter	37		
P/+, P1	DC reactor connection	For the 55K or lower, remove the jumper across terminals P/+ - P1 and connect the DC reactor. (As a DC reactor is supplied with the 75K or higher as standard, be sure to connect the DC reactor.) Keep the jumper across P/+ and P1 attached when a DC reactor is not connected.						
PR, PX	Built-in brake circuit connection	-	per is connected acros circuit is valid. (Provide			_		
	Earth (Ground)	For earthing (grounding) the inverter	r chassis. Must be	earthed (grounded).	15		

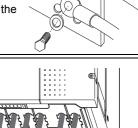

Specification of main circuit terminal 2.4.3

= CAUTION


When connecting a dedicated brake resistor (FR-ABR) and brake unit (FR-BU2, FR-BU, BU) remove jumpers across terminals PR-PX (7.5K or lower). For details, refer to page 35.

Terminal arrangement of the main circuit terminal, power supply and the motor 2.4.4 wiring


- The power supply cables must be connected to R/L1, S/L2, T/L3. (Phase sequence needs not to be matched.) Never connect the power cable to the U, V, W of the inverter. Doing so will damage the inverter.
- Connect the motor to U, V, W. At this time, turning ON the forward rotation switch (signal) rotates the motor in the counterclockwise direction when viewed from the motor shaft.
- When wiring the inverter main circuit conductor of the 220K or higher, tighten a nut from the right side of the conductor. When wiring two wires, place wires on both sides of the conductor. (Refer to the drawing on the right.) For wiring, use bolts (nuts) provided with the inverter.


Handling of the wiring cover

(FR-A720-15K, 18.5K, 22K, FR-A740-18.5K, 22K) For the hook of the wiring cover, cut off the necessary parts using a pair of long-nose pliers etc.

CAUTION =

Cut off the same number of lugs as wires. If parts where no wire is put through has been cut off (10mm or more), protective structure (JEM1030) becomes an open type (IP00).

C

(1) Cable sizes and other specifications of the main circuit terminals and the earthing terminal

Select the recommended cable size to ensure that a voltage drop will be 2% max.

If the wiring distance is long between the inverter and motor, a main circuit cable voltage drop will cause the motor torque to decrease especially at the output of a low frequency.

The following table indicates a selection example for the wiring length of 20m.

200V class (when input power supply is 220V)

			Crim	ping	Cable Sizes											
Applicable Inverter	Terminal Screw	Tightening	Term	Terminal						(mm ²) *1	1 AWG/MCM *2		MCM *2	PVC, etc. (mm ²) *3		
Model	Size *4	Torque N·m	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earthing (grounding) cable	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earthing (grounding) cable			
FR-A720-0.4K to 2.2K	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5			
FR-A720-3.7K	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4			
FR-A720-5.5K	M5(M4)	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	6			
FR-A720-7.5K	M5(M4)	2.5	14-5	8-5	14	8	14	5.5	6	8	16	10	16			
FR-A720-11K	M5	2.5	14-5	14-5	14	14	14	8	6	6	16	16	16			
FR-A720-15K	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16			
FR-A720-18.5K	M8(M6)	7.8	38-8	38-8	38	38	38	14	2	2	35	35	25			
FR-A720-22K	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25			
FR-A720-30K	M8(M6)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25			
FR-A720-37K	M10(M8)	14.7	80-10	80-10	80	80	80	22	3/0	3/0	70	70	35			
FR-A720-45K	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50			
FR-A720-55K	M12(M8)	24.5	100-12	100-12	100	100	100	38	4/0	4/0	95	95	50			
FR-A720-75K	M12(M10)	24.5	150-12	150-12	125	125	125	38	250	250		—				
FR-A720-90K	M12(M10)	24.5	150-12	150-12	150	150	150	38	300	300		—				

400V class (when input power supply is 440V)

			Crim	ping				Cab	le Size	s			
Applicable Inverter		al Tightening Terminal HIV, etc. (mm ²) *1 AWG/MCM *2 PVC, etc. (m			m²) ∗3								
Model	Model Size *4		R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earthing (grounding) cable	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earthing (grounding) cable
FR-A740-0.4K to 3.7K	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
FR-A740-5.5K	M4	1.5	2-4	2-4	2	2	3.5	3.5	12	14	2.5	2.5	4
FR-A740-7.5K	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
FR-A740-11K	M5	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	10
FR-A740-15K	M5	2.5	8-5	8-5	8	8	8	5.5	8	8	10	10	10
FR-A740-18.5K	M6	4.4	14-6	8-6	14	8	14	8	6	8	16	10	16
FR-A740-22K	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
FR-A740-30K	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
FR-A740-37K	M8	7.8	22-8	22-8	22	22	22	14	4	4	25	25	16
FR-A740-45K	M8	7.8	38-8	38-8	38	38	38	22	1	2	50	50	25
FR-A740-55K	M8(M10)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
FR-A740-75K	M10	14.7	60-10	60-10	60	60	60	22	1/0	1/0	50	50	25
FR-A740-90K	M10	14.7	60-10	60-10	60	60	80	22	3/0	3/0	50	50	25
FR-A740-110K	M10(M12)	14.7	80-10	80-10	80	80	80	22	3/0	3/0	70	70	35
FR-A740-132K	M10(M12)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
FR-A740-160K	M12(M10)	24.5	150-12	150-12	125	150	150	38	250	250	120	120	70
FR-A740-185K	M12(M10)	24.5	150-12	150-12	150	150	150	38	300	300	150	150	95
FR-A740-220K	M12(M10)	46	100-12	100-12	2×100	2×100	2×100	60	2×4/0	2×4/0	2×95	2×95	95
FR-A740-250K	M12(M10)	46	100-12	100-12	2×100	2×100	2×125	60	2×4/0	2×4/0	2×95	2×95	95
FR-A740-280K	M12(M10)	46	150-12	150-12	2×125	2×125	2×125	60	2×250	2×250	2×120	2×120	120
FR-A740-315K	M12(M10)	46	150-12	150-12	2×150	2×150	2×150	60	2×300	2×300	2×150	2×150	150
FR-A740-355K	M12(M10)	46	C2-200	C2-200	2×200	2×200	2×200	100	2×350	2×350	2×185	2×185	2×95
FR-A740-400K	M12(M10)	46	C2-200	C2-200	2×200	2×200	2×200	100	2×400	2×400	2×185	2×185	2×95
FR-A740-450K	M12(M10)	46	C2-250	C2-250	2×250	2×250	2×250	100	2×500	2×500	2×240	2×240	2×120
FR-A740-500K	M12(M10)	46	C2-200	C2-250	3×200	2×250	3×200	2×100	2×500	2×500	2×240	2×240	2×120

- *1 For the 55K or lower, the cable size is that of the cable (HIV cable (600V class 2 vinyl-insulated cable) etc.) with continuous maximum permissible temperature of 75°C. Assumes that the surrounding air temperature is 50°C or less and the wiring distance is 20m or less. For the 75K or higher, the recommended cable size is that of the cable (LMFC (heat resistant flexible cross-linked polyethylene insulated cable) etc.) with continuous maximum permissible temperature of 90°C. Assumes that the surrounding air temperature is 50°C or less and wiring is performed in an enclosure.
- *2 For the all capacity of 200V class, and FR-A740-45K or lower, the recommended cable size is that of the cable (THHW cable) with continuous maximum permissible temperature of 75°C. Assumes that the surrounding air temperature is 40°C or less and the wiring distance is 20m or less. For the FR-A740-55K or higher, the recommended cable size is that of the cable (THHN cable) with continuous maximum permissible temperature of 90°C. Assumes that the surrounding air temperature is 40°C or less and wiring is performed in an enclosure. (Selection example for use mainly in the United States.)
- *3 For the FR-A720-15K or lower, and FR-A740-45K or lower, the recommended cable size is that of the cable (PVC cable) with continuous maximum permissible temperature of 70°C. Assumes that the surrounding air temperature is 40°C or less and the wiring distance is 20m or less. For the FR-A720-18.5K or higher, and FR-A740-55K or higher, the recommended cable size is that of the cable (XLPE cable) with continuous maximum permissible temperature of 90°C. Assumes that the surrounding air temperature is 40°C or less and wiring is performed in an enclosure.
- (Selection example for use mainly in Europe.)

*4 The terminal screw size indicates the terminal size for R/L1, S/L2, T/L3, U, V, W, PR, PX, P/+, N/-, P1 and a screw for earthing (grounding). For the FR-A720-5.5K and 7.5K, screw size of terminal PR and PX is indicated in ().

A screw for earthing (grounding) of the FR-A720-18.5K or higher is indicated in ().

The screw size of the terminals P/+, N/-, and P1 in FR-A740-55K is indicated in parentheses.

A screw for P/+ terminal for option connection of the FR-A740-110K and 132K is indicated in ().

A screw for earthing (grounding) of the FR-A740-160K or higher is indicated in ().

The line voltage drop can be calculated by the following formula:

Line voltage drop [V]= $\frac{\sqrt{3} \times \text{wire resistance}[m\Omega/m] \times \text{wiring distance}[m] \times \text{current}[A]}{\sqrt{3} \times \text{wire resistance}[m\Omega/m] \times \text{wiring distance}[m] \times \text{current}[A]}$

1000

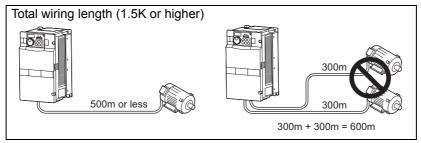
Use a larger diameter cable when the wiring distance is long or when it is desired to decrease the voltage drop (torque reduction) in the low speed range.

CAUTION
 Tighten the terminal screw to the specified torque.
 A screw that has been tighten too loosely can cause a short circuit or malfunction.
 A screw that has been tighten too tightly can cause a short circuit or malfunction due to the unit breakage.
 Use crimping terminals with insulation sleeve to wire the power supply and motor.

(2) Notes on earthing (grounding)

- Leakage currents flow in the inverter. To prevent an electric shock, the inverter and motor must be earthed (grounded). This
 inverter must be earthed (grounded). Earthing (Grounding) must conform to the requirements of national and local safety
 regulations and electrical codes. (NEC section 250, IEC 536 class 1 and other applicable standards)
 A neutral-point earthed (grounded) power supply for 400V class inverter in compliance with EN standard must be used.
- Use the dedicated earth (ground) terminal to earth (ground) the inverter.
- (Do not use the screw in the casing, chassis, etc.)
- Use the thickest possible earth (ground) cable. Use the cable whose size is equal to or greater than that indicated in *page 14*, and minimize the cable length. The earthing (grounding) point should be as near as possible to the inverter.

To be compliant with the EU Direc	ive (Low Voltage Directive),	earth (ground) th	ne inverter according to
the instructions on page 213.			


(3) Total wiring length

• Under induction motor control

Connect one or more induction motors within the total wiring length shown in the following table.

Cable type	Pr. 72 setting (carrier frequency)	0.4K	0.75K	1.5K or higher
Unshielded cable *	2 (2kHz) or lower	300m	500m	500m
Unshielded Cable	3 (3kHz) or higher	200m	300m	500m
Shielded cable	2 (2kHz) or lower	75m	100m	100m
Silleided Cable	3 (3kHz) or higher	200m	300m	500m

The wiring length should be 100m or less under vector control.

REMARKS

When driving a 400V class motor by the inverter, surge voltages attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor. Take the following measure 1) or 2) in this case.

1) Use a "400V class inverter-driven insulation-enhanced motor" and set frequency in *Pr. 72 PWM frequency selection* according to wiring length.

		Wiring Length				
	50m or less 50m to 100m exceeding 100m					
Pr. 72 PWM frequency selection	15 (14.5kHz) or lower	9 (9kHz) or lower	4 (4kHz) or lower			

 Connect the surge voltage suppression filter (FR-ASF-H/FR-BMF-H) to the 55K or lower and the sine wave filter (MT-BSL/BSC) to the 75K or higher on the inverter output side.

For the details, refer to *Chapter 3 of* the *Instruction Manual (Applied)*.

Under IPM motor control

Use the following length of cable or shorter when connecting an IPM motor.

Voltage class	Cable type	Pr. 72 setting (carrier frequency) *	0.4K	0.75K	1.5K or higher
	Unshielded cable	0 (2kHz) to 15 (14kHz)	100m	100m	100m
200V	Shielded cable	5 (2kHz) or lower	75m	100m	100m
	Sillelueu cable	6 (6kHz) or higher	50m	75m	100m
		5 (2kHz) or lower	100m	100m	100m
	Unshielded cable	6 to 9 (6kHz)	50m	50m	100m
400V		10 (10kHz) or higher	50m	50m	50m
400 v		5 (2kHz) or lower	75m	100m	100m
	Shielded cable	6 to 9 (6kHz)	50m	50m	100m
		10 (10kHz) or higher	50m	50m	50m

* The carrier frequency is limited during PM sensorless vector control.

Use one IPM motor for one inverter. Multiple IPM motors cannot be connected to an inverter.

Especially for long-distance wiring, the inverter may be affected by a charging current caused by the stray capacitances of the wiring, leading to a malfunction of the overcurrent protective function or fast response current limit function or a malfunction or fault of the equipment connected on the inverter output side. If fast response current limit function malfunctions, disable this function.

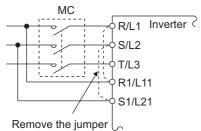
(For Pr. 156 Stall prevention operation selection, refer to Chapter 4 of 🛄 the Instruction Manual (Applied).)

The surge voltage suppression filter (FR-ASF-H/FR-BMF-H) option and sine wave filter (MT-BSL/BSC) cannot be used under IPM motor control, so do not connect them.

• For details of *Pr. 72 PWM frequency selection*, refer to Chapter 4 of the Instruction Manual (Applied). (When using an option sine wave filter (MT-BSL/BSC) for the 75K or higher, set "25" (2.5kHz) in *Pr. 72*.)

 The surge voltage suppression filter (FR-ASF-H/FR-BMF-H) can be used under V/F control and under Advanced magnetic flux vector control. The sine wave filter (MT-BSL/BSC) can be used under V/F control. (For explanation of surge voltage suppression filter (FR-ASF-H/FR-BMF-H) and sine wave filter (MT-BSL/BSC), refer to the manual of each option.)

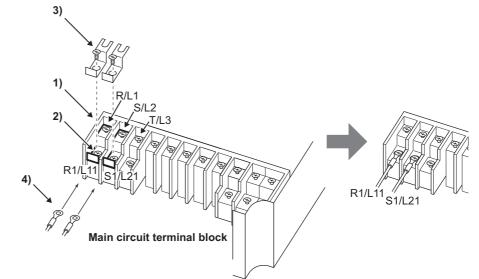
(4) Cable size of the control circuit power supply (terminal R1/L11, S1/L21)


· Terminal screw size: M4

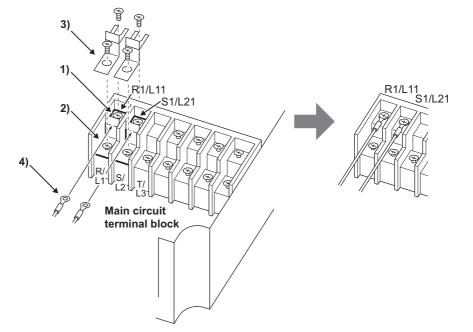
· Cable size: 0.75mm² to 2mm²

• Tightening torque: 1.5N·m

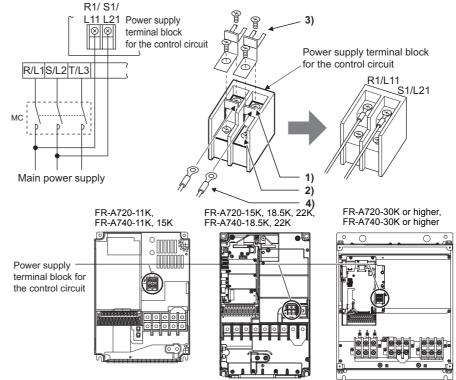
(5) Connecting the control circuit and the main circuit separately to the power supply


<Connection diagram>

When a fault occurs, opening of the electromagnetic contactor (MC) on the inverter power supply side results in power loss in the control circuit, disabling the fault output signal retention. Terminals R1/L11 and S1/L21 are provided to hold a fault signal. In this case, connect the power supply terminals R1/L11 and S1/L21 of the control circuit to the input side of the MC. Do not connect the power cable to incorrect terminals. Doing so may damage the inverter.


• FR-A720-0.4K to 3.7K, FR-A740-0.4K to 3.7K

- 1)Loosen the upper screws.
- 2) Remove the lower screws.
- 3)Remove the jumper
- 4) Connect the separate power supply cable for the control circuit to the lower terminals (R1/L11, S1/L21).


• FR-A720-5.5K, 7.5K, FR-A740-5.5K, 7.5K

- 1)Remove the upper screws.
- 2)Remove the lower screws.
- 3)Remove the jumper.
- 4) Connect the separate power supply cable for the control circuit to the <u>upper terminals</u> (R1/L11, S1/L21).

• FR-A720-11K or higher, FR-A740-11K or higher

- 1) Remove the upper screws.
- 2)Remove the lower screws.
- 3) Pull the jumper toward you to remove.
- 4) Connect the separate power supply cable for the control circuit to the upper terminals (R1/L11, S1/L21).

= CAUTION

- When using separate power supply, always remove the jumper across terminals R/L1 and R1/L11 and across S/L2 and S1/L21. The inverter may be damaged if you do not remove the jumper.
- The voltage should be the same as that of the main control circuit when the control circuit power is supplied from other than the primary side of the MC.
- The power capacity necessary when separate power is supplied from R1/L11 and S1/L21 differs according to the inverter capacity.

	11K or lower	15K	18.5K or higher
200V class	60VA	80VA	80VA
400V class	60VA	60VA	80VA

If the main circuit power is switched OFF (for 0.1s or more) then ON again, the inverter resets and a fault output will not be held.

2.4.5 Control circuit terminals

indicates that terminal functions can be selected using *Pr. 178 to Pr. 196 (I/O terminal function selection) (Refer to Chapter 4 of* the Instruction Manual (Applied).)

(1) Input signals

Type	Terminal Symbol	Terminal Name	Description		Rated Specifications	Refer to page
	STF	Forward rotation start	Turn ON the STF signal to start forward rotation and turn it OFF to stop.	When the STF and STR signals are turned ON		95
	STR	Reverse rotation start	Turn ON the STR signal to start reverse rotation and turn it OFF to stop.	simultaneously, the stop command is given.	Input resistance 4.7kΩ Voltage at	55
	STOP	Start self- holding selection	Turn ON the STOP signal to self-hold the sta	art signal.	opening 21 to 27VDC Current at short- circuited 4 to	*2
	RH, RM, RL	Multi-speed selection	Multi-speed can be selected according to the RM and RL signals.	e combination of RH,	6mADC	96
		Jog mode selection	Turn ON the JOG signal to select Jog operat and turn ON the start signal (STF or STR) to			*2
	JOG	Pulse train input	JOG terminal can be used as pulse train inpupulse train input terminal, the <i>Pr. 291</i> setting r (maximum input pulse: 100kpulses/s)	needs to be changed.	Input resistance 2kΩ Current at short- circuited 8 to 13mADC	*2
	RT	Second function selection	Turn ON the RT signal to select second func When the second function such as "second t "second V/F (base frequency)" are set, turnin selects these functions.	torque boost" and ng ON the RT signal		*2
hut	MRS	Output stop	output.	to shut off the inverter output when stopping the motor by		*2
Contact input	RES	RES Reset Use to reset fault output provided when fault oc Turn ON the RES signal for more than 0.1s, the In the initial status, reset is set always-enabled. reset can be set enabled only at fault occurrence 1s after reset is cancelled.	then turn it OFF. ed. By setting <i>Pr. 75</i> , ence. Recover about	Input resistance 4.7kΩ Voltage at opening 21 to 27VDC	149	
	AU	Terminal 4 input selection	Terminal 4 is valid only when the AU signal is frequency setting signal can be set between Turning the AU signal ON makes terminal 2 invalid.	4 and 20mADC.)	Current at short- circuited 4 to 6mADC	99
		PTC input	AU terminal is used as PTC input terminal (the motor). When using it as PTC input termi switch to PTC.			*2
	CS	Selection of automatic restart after instantaneous power failure	When the CS signal is left ON, the inverter reat power restoration. Note that restart setting operation. In the initial setting, a restart is dis (<i>Refer to Pr. 57 Restart coasting time in Chapter Manual (Applied).</i>)	is necessary for this sabled.		*2
	Contact input common (sink) (initial setting)		· ·			
SD External Connect this termina transistor transistor output (op common programmable contr		Connect this terminal to the power supply co transistor output (open collector output) devi- programmable controller, in the source logic by undesirable currents.	ce, such as a to avoid malfunction		—	
		24VDC power supply common	Common output terminal for 24VDC 0.1A po terminal). Isolated from terminals 5 and SE.	wer supply (PC		

Type	Terminal Symbol	Terminal Name	Description	Rated Specifications	Refer to page
t input		External transistor common (sink) (initial setting)	Connect this terminal to the power supply common terminal of a transistor output (open collector output) device, such as a programmable controller, in the sink logic to avoid malfunction by undesirable currents.	Power supply voltage range 19.2 to 28.8VDC	23
Contact input	PC	Contact input common (source)	Common terminal for contact input terminal (source logic).	Permissible load current 100mA	23
		24VDC power supply	Can be used as 24VDC 0.1A power supply.		
	10E	Frequency setting power	When connecting the frequency setting potentiometer at an initial status, connect it to terminal 10. Change the input specifications of terminal 2 when connecting it	10VDC Permissible load current 10mA	*2
	10	supply	to terminal 10E. (Refer to Pr. 73 Analog input selection in Chapter 4 of the Instruction Manual (Applied).)	5VDC Permissible load current 10mA	93, 97
setting	2	Frequency setting (voltage)	Inputting 0 to 5VDC (or 0 to 10V, 0 to 20mA) provides the maximum output frequency at 5V (10V, 20mA) and makes input and output proportional. Use <i>Pr. 73</i> to switch from among input 0 to 5VDC (initial setting), 0 to 10VDC, and 0 to 20mA. Set the voltage/current input switch in the ON position to select current input (0 to 20mA). *1	Voltage input: Input resistance $10k\Omega \pm 1k\Omega$ Maximum permissible voltage 20VDC Current input: Input resistance $245\Omega \pm 5\Omega$ Maximum	93, 97
Frequency setting	4	Frequency setting (current)	Inputting 4 to 20mADC (or 0 to 5V, 0 to 10V) provides the maximum output frequency at 20mA makes input and output proportional. This input signal is valid only when the AU signal is ON (terminal 2 input is invalid). Use <i>Pr. 267</i> to switch from among input 4 to 20mA (initial setting), 0 to 5VDC, and 0 to 10VDC. Set the voltage/current input switch in the OFF position to select voltage input (0 to 5V/0 to 10V).*1 Use <i>Pr. 858</i> to switch terminal functions. (<i>Refer to Chapter 4 of Legal the Instruction Manual (Applied).</i>)	voltage/current switch1 switch2	94, 99
	1	Frequency setting auxiliary	Inputting 0 to \pm 5 VDC or 0 to \pm 10VDC adds this signal to terminal 2 or 4 frequency setting signal. Use <i>Pr</i> : <i>73</i> to switch between the input 0 to \pm 5VDC and 0 to \pm 10VDC (initial setting). Use <i>Pr</i> : <i>868</i> to switch terminal functions.	Input resistance $10k\Omega \pm 1k\Omega$ Maximum permissible voltage $\pm 20VDC$	*2
	5	Frequency setting common	Common terminal for frequency setting signal (terminal 2, 1 or 4) and analog output terminal AM. Do not earth (ground).		_

*1 Set *Pr. 73, Pr. 267*, and a voltage/current input switch correctly, then input an analog signal in accordance with the setting. Applying a voltage signal with voltage/current input switch ON (current input is selected) or a current signal with switch OFF (voltage input is selected) could cause component damage of the inverter or analog circuit of signal output devices.

*2 Refer to Chapter 4 of the Instruction Manual (Applied).

(2) Output signals

Type	Terminal Symbol	Terminal Name	Description	Rated Specifications	Refer to page
elay	A1, B1, C1	Relay output 1 (Fault output)	1 changeover contact output indicates that the inverter protective function has activated and the output stopped. Fault: No conduction across B-C (Across A-C Continuity), Normal: Across B-C Continuity (No conduction across A-C)	Contact capacity: 230VAC 0.3A (Power	*
Å	A2, B2, C2	Relay output 2	1 changeover contact output	factor = 0.4) 30VDC 0.3A	*

Type	Terminal Symbol	Terminal Name	Description	Rated Specifications	Refer to page	
	RUN	Inverter running		*		
	SU	Up to frequency	Switched low when the output frequency reaches within the range of ±10% (initial value) of the set frequency. Switched high during acceleration/ deceleration and at a stop.		Permissible load 24VDC (27VDC maximum) 0.1A (A voltage drop is 2.8V maximum	*
Open collector	OL	Overload warning	Switched low when stall prevention is activated by the stall prevention function. Switched high when stall prevention is cancelled.	Fault code (4bit)	when the signal is ON.) Low is when the open collector	*
Oper	IPF	Instantaneous power failure	Switched low when an instantaneous power failure and under voltage protections are activated.	output	output transistor is ON (conducts). High is when the transistor is OFF (does not conduct)	*
	FU	Frequency detection				*
	SE	Open collector output common	Common terminal for terminals RUN, SU	, OL, IPF, FU		_
Pulse	FM	For meter		Output item: Output frequency (initial setting)	Permissible load current 2mA 1440pulses/s at full scale	*
Pu		NPN open collector output inverter reset. The output signal is proportional to the magnitude of the corresponding signals from th collector	signals can be output from the open collector terminals by setting <i>Pr. 291</i> .	Maximum output pulse: 50kpulses/s Permissible load current : 80mA	*	
Analog	АМ	Analog signal output	Use <i>Pr. 55</i> , <i>Pr. 56</i> , and <i>Pr. 866</i> to set full scales for the monitored output frequency, output current, and torque. (<i>Refer to page 281</i>)	Output item: Output frequency (initial setting)	Output signal 0 to 10VDC Permissible load current 1mA (load impedance 10k Ω or more) Resolution 8 bit	*

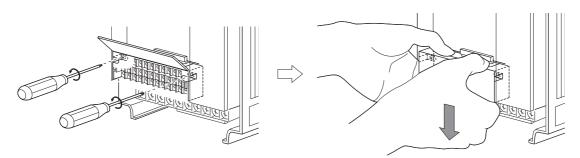
7/

* Refer to Chapter 4 of me instruction Manual (Applied).

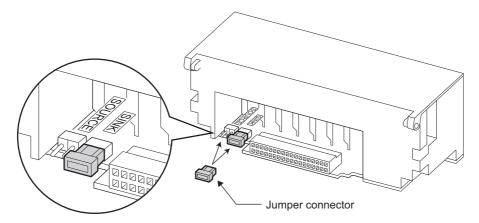
(3) Communication

Type		erminal Symbol	Terminal Name	Description	Refer to page	
5			PU connector	With the PU connector, communication can be made through RS-485. (for connection on a 1:1 basis only) . Conforming standard : EIA-485 (RS-485) . Transmission format : Multidrop . Communication speed : 4800 to 38400bps . Overall length : 500m	25	
3-485	s		Inverter			
RS	mina	TVD	transmission terminal	With the RS-485 terminals, communication can be made through RS-485. Conforming standard : EIA-485 (RS-485)		
	5 ter	1010	Inverter	Transmission format : Multidrop link	26	
	RS-485 terminals		reception terminal	Communication speed: 300 to 38400bpsOverall length: 500m		
	Ŕ	SG	Earth (Ground)]		
USB			USB connector	By connecting an inverter to the personal computer through USB, FR Configurator can be used for setting the inverter, monitoring, and testing the operation. Interface: Conforms to USB1.1 Transmission speed: 12Mbps Connector: USB B connector (B receptacle)		

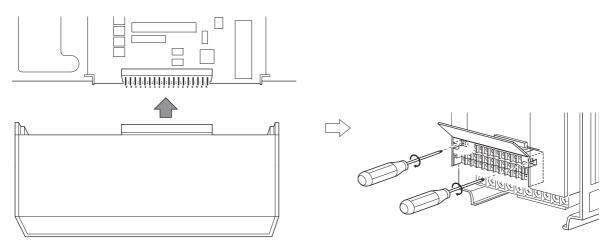
2.4.6 Changing the control logic


The input signals are set to sink logic (SINK) when shipped from the factory.

To change the control logic, the jumper connector on the back of the control circuit terminal block must be moved to the other position.

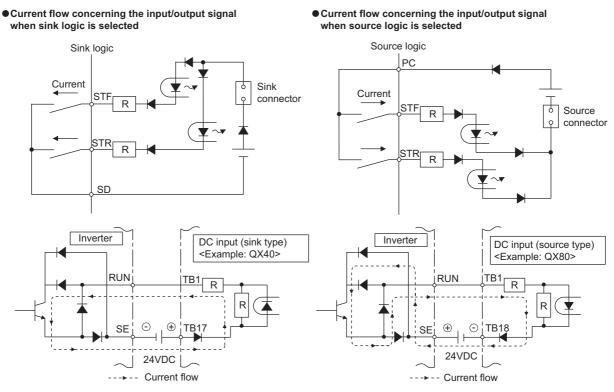

(The output signals may be used in either the sink or source logic independently of the jumper connector position.)

1)Loosen the two mounting screws in both ends of the control circuit terminal block. (These screws cannot be removed.)


Pull down the terminal block from behind the control circuit terminals.

2) Change the jumper connector set to the sink logic (SINK) on the rear panel of the control circuit terminal block to source logic (SOURCE).

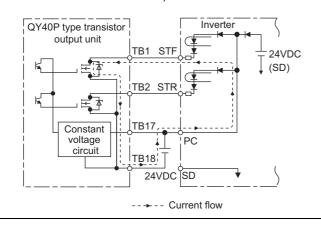
3) Using care not to bend the pins of the inverter's control circuit connector, reinstall the control circuit terminal block and fix it with the mounting screws.



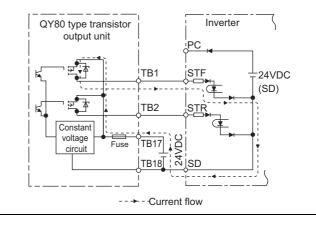
____ CAUTION _

- 1. Make sure that the control circuit connector is fitted correctly.
- 2. While power is ON, never disconnect the control circuit terminal block.

4) Sink logic and source logic


- In sink logic, a signal switches ON when a current flows from the corresponding signal input terminal.
 Terminal SD is common to the contact input signals. Terminal SE is common to the open collector output signals.
- In source logic, a signal switches ON when a current flows into the corresponding signal input terminal.
 - Terminal PC is common to the contact input signals. Terminal SE is common to the open collector output signals.

• When using an external power supply for transistor output


· Sink logic type

Use terminal PC as a common terminal, and perform wiring as shown below. (Do not connect terminal SD of the inverter with terminal 0V of the external power supply. When using terminals PC-SD as a 24VDC power supply, do not install an external power supply in parallel with the inverter. Doing so may cause a malfunction in the inverter due to undesirable currents.)

Source logic type

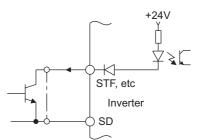
Use terminal SD as a common terminal, and perform wiring as shown below. (Do not connect terminal PC of the inverter with terminal +24V of the external power supply. When using terminals PC-SD as a 24VDC power supply, do not install an external power supply in parallel with the inverter. Doing so may cause a malfunction in the inverter due to undesirable currents.)

2.4.7 Wiring of control circuit

(1) Control circuit terminal layout

A1 B1 C1 A2 B2 C2 10E 10 2 5 4 O
RL RM RH RT AU STOP MRS RES SD FM AM 1
SE_RUN_SU_IPF_OL_FU_SD_SD_STE_STR_JOG_CS_PC_

Control circuit terminal * Terminal screw size: M3.5 Tightening torque: 1.2N·m Refer to instruction manuals of options for the available control


terminals other than the standard control circuit terminal

(2) Common terminals of the control circuit (SD, 5, SE)

- Terminals SD, 5, and SE are all common terminals (0V) for I/O signals and are isolated from each other. Do not earth (ground) these terminals. Avoid connecting the terminal SD and 5 and the terminal SE and 5.
- Terminal SD is a common terminal for the contact input terminals (STF, STR, STOP, RH, RM, RL, JOG, RT, MRS, RES, AU, CS) and pulse train output terminal (FM). The open collector circuit is isolated from the internal control circuit by photocoupler.
- Terminal 5 is a common terminal for frequency setting signal (terminal 2, 1 or 4) and analog output terminal AM. It should be protected from external noise using a shielded or twisted cable.
- Terminal SE is a common terminal for the open collector output terminal (RUN, SU, OL, IPF, FU). The contact input circuit is isolated from the internal control circuit by photocoupler.

(3) Signal inputs by contactless switches

The contacted input terminals of the inverter (STF, STR, STOP, RH, RM, RL, JOG, RT, MRS, RES, AU, CS) can be controlled using a transistor instead of a contacted switch as shown on the right.

External signal input using transistor

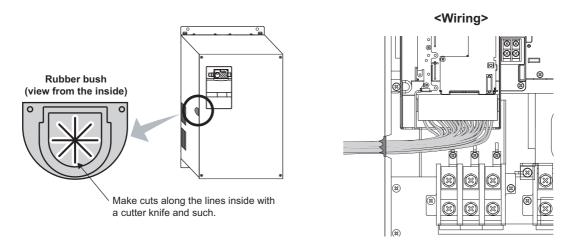
2.4.8 Wiring instructions

It is recommended to use the cables of 0.75mm² gauge for connection to the control circuit terminals.

If the cable gauge used is 1.25mm² or more, the front cover may be lifted when there are many cables running or the cables are run improperly, resulting in an operation panel contact fault.

- The wiring length should be 30m (200m for terminal FM) maximum.
- When using contact inputs, use two or more parallel micro-signal contacts or twin contacts to prevent a contact faults since the control circuit input signals are micro-currents.

Micro signal contacts

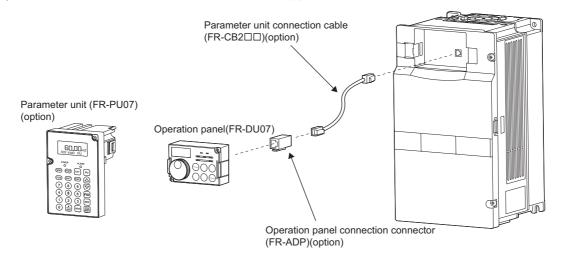


Twin contacts

- To suppress EMI, use shielded or twisted cables for the control circuit terminals and run them away from the main and power circuits (including the 200V relay sequence circuit). For the cables connected to the control circuit terminals, connect their shields to the common terminal of the connected control circuit terminal. When connecting an external power supply to the terminal PC, however, connect the shield of the power supply cable to the negative side of the external power supply. Do not directly earth (ground) the shield to the enclosure, etc.
- Always apply a voltage to the fault output terminals (A, B, C) via a relay coil, lamp, etc.

• Wiring of the control circuit of the 75K or higher

For wiring of the control circuit of the 75K or higher, separate away from wiring of the main circuit. Make cuts in rubber bush of the inverter side and lead wires.



2.4.9 Mounting the operation panel (FR-DU07) or parameter unit (FR-PU07) on the enclosure surface

Having an operation panel or a parameter unit on the enclosure surface is convenient.

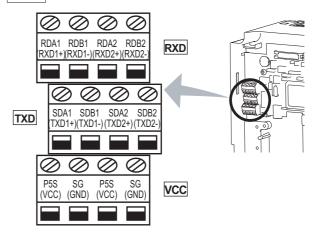
With a connection cable, you can mount the operation panel (FR-DU07) or the parameter unit (FR-PU07) to the enclosure surface, and connect it to the inverter. Use the option FR-CB2□□, or the connector and cable available on the market.

(For mounting the operation panel (FR-DU07), the optional connector (FR-ADP) is required.) Securely insert one end of the connection cable until the stoppers are fixed.

- CAUTION

Do not connect the PU connector to the computer's LAN port, FAX modem socket or telephone connector. The inverter and machine could be damaged due to differences in electrical specifications.

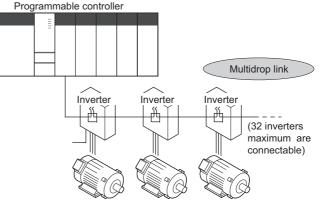
REMARKS


- · Refer to page 6 for removal method of the operation panel.
- When using a commercially available connector and cable as a parameter unit connection cable, refer to *Chapter 2 of* the *Instruction Manual (Applied)*.

2.4.10 RS-485 terminal block

- · Conforming standard: EIA-485(RS-485)
- · Transmission format: Multidrop link
- Communication speed: MAX 38400bps
- Overall length: 500m
 Connection cable: Twi
 - Connection cable:Twisted pair cable (4 pairs)

Terminating resistor switch Initially-set to "OPEN". Set only the terminating resistor switch of the remotest inverter to the " 100Ω " position.

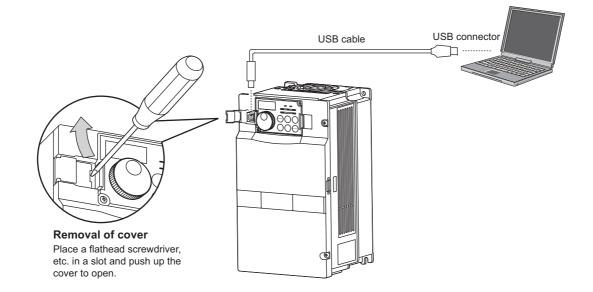

2.4.11 Communication operation

Using the PU connector or RS-485 terminal, you can perform communication operation from a personal computer etc. When the PU connector is connected with a personal, FA or other computer by a communication cable, a user program can run and monitor the inverter or read and write to parameters.

For the Mitsubishi inverter protocol (computer link operation), communication can be performed with the PU connector and RS-485 terminal.

For the Modbus-RTU protocol, communication can be performed with the RS-485 terminal.

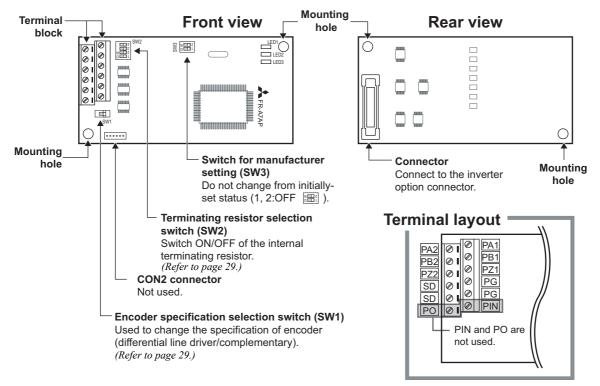
For further details, refer to *Chapter 4 of* the *Instruction Manual (Applied)*.



2.4.12 USB connector

A personal computer and an inverter can be connected with a USB (Ver1. 1) cable. You can perform parameter setting and monitoring with the FR Configurator.

•USB communication specifications


Interface	Conforms to USB1.1		
Transmission speed	12Mbps		
Wiring length	Maximum 5m		
Connector	USB B connector (B receptacle)		
Power supply	Self-power supply		

2.4.13 Connection of motor with encoder (vector control)

Orientation control and encoder feedback control, and speed control, torque control and position control by full-scale vector control operation can be performed using a motor with encoder and a plug-in option FR-A7AP.

(1) Structure of the FR-A7AP

(2) Terminals of the FR-A7AP

Terminal	Terminal Name	Description		
PA1	Encoder A-phase signal input terminal			
PA2	Encoder A-phase inverse signal input terminal			
PB1	Encoder B-phase signal input terminal	A-, B- and Z-phase signals are input from the encoder.		
PB2	Encoder B-phase inverse signal input terminal	A, b' and Z-phase signals are input from the encoder.		
PZ1	Encoder Z-phase signal input terminal	7		
PZ2	Encoder Z-phase inversion signal input terminal			
PG	Encoder power supply (positive side) input terminal			
SD	Encoder power supply ground terminal	Connect the external power supply (5V, 12V, 15V, 24V) and the encoder power cable. When the encoder output is the differential line driver type, only 5V can be input. Make sure the voltage of the external power supply is the same as the encoder output voltage. (Check the encoder specification.)		
PIN	Not used.			
PO	Not useu.			

= CAUTION =

When the input power supply voltage to the encoder and its output voltage differ, the signal loss detection (E.ECT) may occur.
 Incorrect wiring or faulty setting to the encoder will cause a fault such as an overcurrent (E.OC□) and an inverter overload

(E.THT). Correctly perform wiring and setting to the encoder.

- (3) Switches of the FR-A7AP
- Encoder specification selection switch (SW1) Select either differential line driver or complementary It is initially set to the differential line driver. Switch its position according to output circuit.
- Terminating resistor selection switch (SW2) Select ON/OFF of the internal terminating resistor. Set the switch to ON (initial status) when an encoder output type is differential line driver and set to OFF when complementary. ON : with internal terminating resistor (initial status)

OFF: without internal terminating resistor

REMARKS

Set all switches to the same setting (ON/OFF).

If the encoder output type is differential line driver, set the terminating resistor switch to the "OFF" position when sharing the same encoder with other unit (NC (computerized numerical controller), etc.) or a terminating resistor is connected to other unit.

· Motor used and switch setting

Motor		Terminating Resistor Selection Switch (SW2)	Power Specifications *2
SF-JR	Differential	ON	5V
SF-HR	Differential	ON	5V
Others	*1	*1	*1
SF-JRCA	Differential	ON	5V
SF-HRCA	Differential	ON	5V
Others	*1	*1	*1
SF-V5RU	Complementary	OFF	12V
-	*1	*1	*1
	SF-HR Others SF-JRCA SF-HRCA Others	SF-HRDifferentialOthers*1SF-JRCADifferentialSF-HRCADifferentialOthers*1SF-V5RUComplementary	Selection Switch (SW1)Selection Switch (SW2)SF-JRDifferentialONSF-HRDifferentialONOthers*1*1SF-JRCADifferentialONSF-HRCADifferentialONOthers*1*1SF-V5RUComplementaryOFF

Encoder Specification

Set according to the motor (encoder) used. *1

Choose a power supply (5V/12V/15V/24V) for encoder according to the encoder output voltage. When the encoder output is *2 the differential line driver type, only 5V can be input.

= CAUTION =

SW3 switch is for manufacturer setting. Do not change the setting.

Encoder specification

Item	Encoder for SF-JR	Encoder for SF-V5RU
Resolution	1024 Pulse/Rev	2048 Pulse/Rev
Power supply voltage	5VDC±10%	12VDC±10%
Current consumption	150mA	150mA
Output signal form	A, B phases (90° phase shift) Z phase: 1 pulse/rev	A, B phases (90° phase shift) Z phase: 1 pulse/rev
Output circuit	Differential line driver 74LS113 equivalent	Complementary
Output voltage	H level: 2.4V or more L level: 0.5V or less	H level: "Power supply for encoder-3V" or more L level: 3V or less

Encoder with resolution of 1000 to 4096 pulse/rev is recommended.

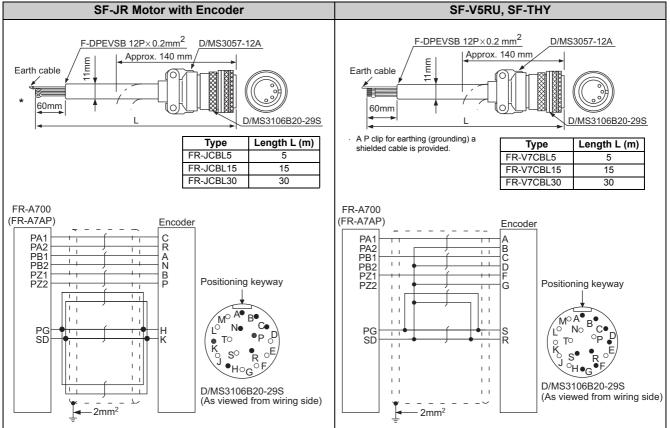
-Complementary Ш Internal terminating resistor-ON С (initial status)

Internal terminating resistor-OFF

Terminating Resistor

Differential line

driver (initial status


0

8 **18**

Power

(4) Encoder Cable

As the terminal block of the FR-A7AP is an insertion type, earth cables need to be modified. (See below)

• When using the dedicated encoder cable (FR-JCBL, FR-V5CBL, etc.) for the conventional motor, cut the crimpling terminal of the encoder cable and strip its sheath to make its cables loose.

Also, protect the shielded cable of the shielded twisted pair cable to ensure that it will not make contact with the conductive area.

Wire the stripped cable after twisting it to prevent it from becoming loose. In addition, do not solder it.

REMARKS

Information on blade terminals Commercially available products (as of February 2012)

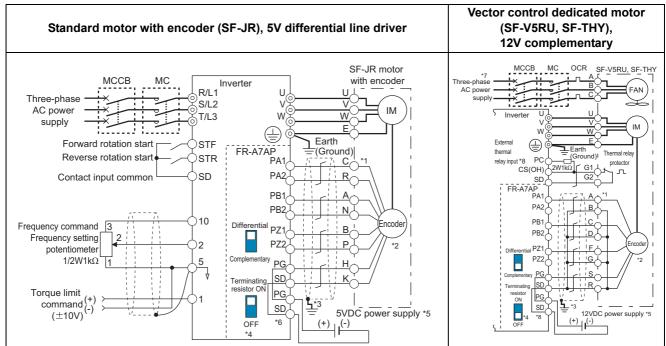
Phoenix Contact Co.,Ltd.

Terminal Screw	Wire Size (mm ²)	Ferrule Ter	minal Model	Crimping Tool
Size	write Size (mm.)	with insulation sleeve	without insulation sleeve	Name
M2	0.3, 0.5	AI 0,5-6WH	A 0,5-6	CRIMPFOX 6

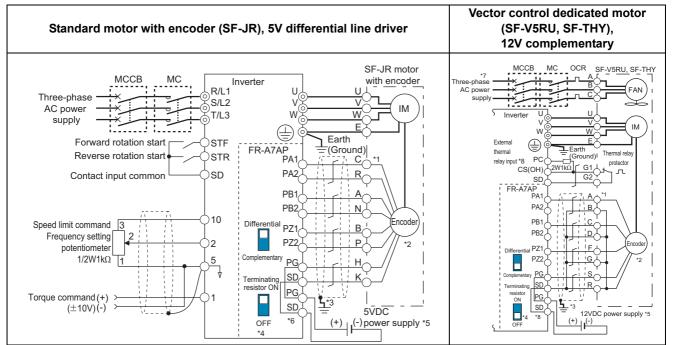
•NICHIFU Co.,Ltd.

Terminal Screw	Wire Size (mm ²)	Blade terminal product	Insulation product	Crimping Tool
Size		number	number	Product Number
M2	0.3 to 0.75	BT 0.75-7	VC 0.75	NH 69

When using the blade terminal (without insulation sleeve), use care so that the twisted wires do not come out.

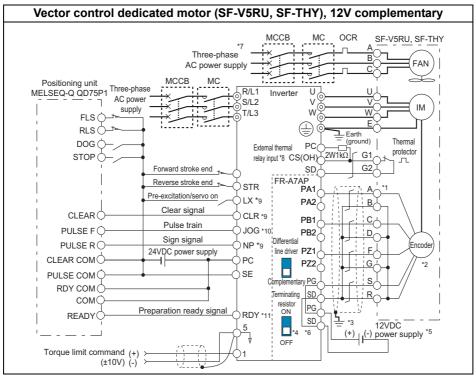


Connection terminal compatibility table

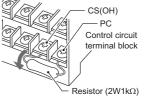

Motor		SF-V5RU, SF-THY	SF-JR/HR/JRCA/HRCA (with Encoder)
Encoder cable		FR-V7CBL	FR-JCBL
	PA1	PA	PA
	PA2	Keep this open.	PAR
	PB1	РВ	PB
FR-A7AP terminal	PB2	Keep this open.	PBR
	PZ1	PZ	PZ
	PZ2	Keep this open.	PZR
	PG	PG	5E
	SD	SD	AG2

(5) Wiring

Speed control


· Torque control

2

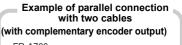

INSTALLATION AND WIRING

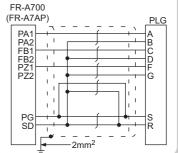
Position control

- *1 The pin number differs according to the encoder used. Speed control, torque control and position control by pulse train input could be normally performed with or without connecting Z phase.
- *2 Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio should be 1:1.
- *3 Earth (Ground) the shielded cable of the encoder cable to the enclosure with a P-clip, etc. (Refer to page 33.)
- *4 For the complementary, set the terminating resistor selection switch to OFF position. (*Refer to page 29.*)
- *5 A separate power supply of 5V/12V/15V/24V is necessary according to the encoder power specification. When the encoder output is the differential line driver type, only 5V can be input. Make the voltage of the external power supply the same as the encoder output voltage, and connect the external power supply between PG and SD.
- *6 For terminal compatibility of the FR-JCBL, FR-V7CBL and FR-A7AP, refer to page 31.
- *7 For the fan of the 7.5kW or lower dedicated motor, the power supply is single phase. (200V/50Hz, 200 to 230V/60Hz)
- *8 Assign OH (external thermal input) signal to the terminal CS. (Set "7" in *Pr. 186*) Connect the recommended 2W1kΩ resistor between the terminal PC and CS (OH) (Recommended product: MOS2C102J2W1kΩ by KOA Corporation). Install the resistor pushing against the bottom part of the terminal block so as to avoid a contact with other cables.

Refer to Chapter 4 of the Instruction Manual (Applied) for details of Pr. 186 CS terminal function selection.

- *9 Assign the function using Pr. 178 to Pr. 184, Pr. 187 to Pr. 189 (input terminal function selection).
- *10 When position control is selected, terminal JOG function is invalid and simple position pulse train input terminal becomes valid.
- *11 Assign the function using Pr. 190 to Pr. 194 (output terminal function selection).


- (6) Instructions for encoder cable wiring
- Use shielded twisted pair cables (0.2mm² or larger) to connect the FR-A7AP and position detector. Cables to terminals PG and SD should be connected in parallel or be larger in size according to the cable length.


To protect the cables from noise, run them away from any source of noise (e.g. the main circuit and power supply voltage).

Wiring Length	Parallel Connection	Larger-Size Cable	
Within 10m	At least two cables in parallel	Cable	0.4mm ² or larger
Within 20m	At least four cables in parallel	gauge	0.75mm ² or larger
Within 100m *	At least six cables in parallel	0.2mm ²	1.25mm ² or larger

When differential line driver is set and a wiring length is 30m or more The wiring length can be extended to 100m by slightly increasing the power by 5V (approx. 5.5V) using six or more cables with gauge size of 0.2mm² in parallel or a cable with gauge size of 1.25mm² or more. Note that the voltage applied should be within power supply specifications of encoder.

• To reduce noise of the encoder cable, earth (ground) the encoder shielded cable to the enclosure (as close as possible to the inverter) with a P-clip or U-clip made of metal.

Shield P-clip

Earthing (grounding) example using a P-clip

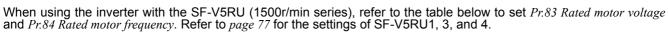
REMARKS

- For details of the optional encoder dedicated cable (FR-JCBL/FR-V7CBL), refer to page 30.
- The FR-V7CBL is provided with a P clip for earthing (grounding) shielded cable.
- (7) Parameter for encoder (Pr. 359, Pr. 369)

Parameter Number	Name	Initial Value	Setting Range	Description		
350	Encoder rotation	1	0	Encoder CW Forward rotation is clockwise rotation when viewed from A.	Set the rotation direction according to	
339	direction	direction 1	1	Encoder CCW O Forward rotation is counterclockwise rotation when viewed from A.	the motor specification.	
369	Number of encoder pulses	1024	0 to 4096	Set the number of encoder pulses output. Set the number of pulses before it is multiplied by 4.		

The above parameters can be set when the FR-A7AP/FR-A7AL (option) is mounted.

(8) Motor for vector control and parameter setting


Motor Name		Pr. 9 Electronic thermal O/L relay	Pr. 71 Applied motor	Pr. 80 Motor capacity	Pr. 81 Number of motor poles	Pr. 359 Encoder rotation direction	Pr. 369 Number of encoder pulses
	SF-JR	Rated motor current	0	Motor capacity	Number of motor poles	1	1024
Mitsubishi standard motor	SF-JR 4P 1.5kW or lower	Rated motor current	20	Motor capacity	4	1	1024
motor	SF-HR	Rated motor current	40	Motor capacity	Number of motor poles	1	1024
	Others	Rated motor current	3 *1	Motor capacity	Number of motor poles	*2	*2
Mitsubishi constant-	SF-JRCA 4P	Rated motor current	1	Motor capacity	4	1	1024
torque motor	SF-HRCA	Rated motor current	50	Motor capacity	Number of motor poles	1	1024
loique motor	Others	Rated motor current	13 *1	Motor capacity	Number of motor poles	*2	*2
Mitsubishi vector	SF-V5RU (1500r/min series)	0 *3	30	Motor capacity	4	1	2048
control dedicated motor	SF-V5RU (except for 1500r/ min series)	0 *3	13 •1	Motor capacity	4	1	2048
	SF-THY	0 *3	33 *1	Motor capacity	4	1	2048
Other manufacturer's standard motor	—	Rated motor current	3 *1	Motor capacity	Number of motor poles	*2	*2
Other manufacturer's constant-torque motor	—	Rated motor current	1 3 • ₁	Motor capacity	Number of motor poles	*2	*2

Values in the bolded frame are initial values.

*1 Offline auto tuning is necessary. (Refer to page 80)

*2 Set this parameter according to the motor (encoder) used.

*3 Use thermal protector input provided with the motor.

		SF-V	/5RU				SF-V	/5RU	
Motor capacity	200V		400V		Motor capacity	200V		400V	
	Pr. 83 (V)	Pr. 84 (Hz)	Pr. 83 (V)	Pr. 84 (Hz)		Pr. 83 (V)	Pr. 84 (Hz)	Pr. 83 (V)	Pr. 84 (Hz)
1.5kW	188	52	345	52	18.5kW	171	51	346	51
2.2kW	188	52	360	52	22kW	160	51	336	51
3.7kW	190	52	363	52	30kW	178	51	328	51
5.5kW	165	51	322	51	37kW	166	51	332	51
7.5kW	164	51	331	51	45kW	171	51	342	51
11kW	171	51	320	51	55kW	159	51	317	51
15kW	164	51	330	51	•	•	•	•	

(9) Combination with a vector control dedicated motor Refer to the table below when using with a vector control dedicated motor. Combination with the SF-V5RU and SF-THY ٠

Voltage		200V class			400V class					
Rated speed	1500r/min									
Base frequency	50Hz 3000r/min									
Maximum speed										
Motor capacity	Motor frame number	Motor type	Inverter model	Motor frame number	Motor type	Inverter model				
1.5kW	90L	SF-V5RU1K	FR-A720-2.2K	90L	SF-V5RUH1K	FR-A740-2.2K				
2.2kW	100L	SF-V5RU2K	FR-A720-3.7K	100L	SF-V5RUH2K	FR-A740-2.2K				
3.7kW	112M	SF-V5RU3K	FR-A720-5.5K	112M	SF-V5RUH3K	FR-A740-3.7K				
5.5kW	132S	SF-V5RU5K	FR-A720-7.5K	132S	SF-V5RUH5K	FR-A740-7.5K				
7.5kW	132M	SF-V5RU7K	FR-A720-11K	132M	SF-V5RUH7K	FR-A740-11K				
11kW	160M	SF-V5RU11K	FR-A720-15K	160M	SF-V5RUH11K	FR-A740-15K				
15kW	160L	SF-V5RU15K	FR-A720-18.5K	160L	SF-V5RUH15K	FR-A740-18.5K				
18.5kW	180M	SF-V5RU18K	FR-A720-22K	180M	SF-V5RUH18K	FR-A740-22K				
22kW	180M	SF-V5RU22K	FR-A720-30K	180M	SF-V5RUH22K	FR-A740-30K				
30kW	200L *2	SF-V5RU30K	FR-A720-37K	200L *2	SF-V5RUH30K	FR-A740-37K				
37kW	200L *2	SF-V5RU37K	FR-A720-45K	200L *2	SF-V5RUH37K	FR-A740-45K				
45kW	200L *2	SF-V5RU45K	FR-A720-55K	200L *2	SF-V5RUH45K	FR-A740-55K				
55kW	225S *1	SF-V5RU55K	FR-A720-75K	225S *1	SF-V5RUH55K	FR-A740-75K				
75kW	250MD	SF-THY	FR-A720-90K	250MD	SF-THY	FR-A740-90K				
90kW	—	_	—	250MD	SF-THY	FR-A740-110K				
110kW	—	_	—	280MD	SF-THY	FR-A740-132K				
132kW	-	_	—	280MD	SF-THY	FR-A740-160K				
160kW	-	_	—	280MD	SF-THY	FR-A740-185K				
200kW	—	_	—	280L	SF-THY	FR-A740-220K				
250kW	_	_	_	315H	SF-THY	FR-A740-280K				

· Combination with the SF-V5RU1, 3, 4 and SF-THY

	SF-V5RU□1 (1:2)			SF-V5RU□1 (1:2) SF-V5RU□3 (1:3)				SF-V5RU04 (1:4)	
Voltage					200V class					
Rated speed		1000r/min	I		1000r/min			500r/min		
Base frequency		33.33Hz			33.33Hz			16.6Hz		
Maximum speed		2000r/min	I		3000r/min			2000r/min		
Motor capacity	Motor frame number	Motor type	Inverter model	Motor frame number	Motor type	Inverter model	Motor frame number	Motor type	Inverter model	
1.5kW	100L	SF-V5RU1K1	FR-A720-2.2K	112M	SF-V5RU1K3	FR-A720-2.2K	132M	SF-V5RU1K4	FR-A720-2.2K	
2.2kW	112M	SF-V5RU2K1	FR-A720-3.7K	132S	SF-V5RU2K3	FR-A720-3.7K	160M	SF-V5RU2K4	FR-A720-3.7K	
3.7kW	132S	SF-V5RU3K1	FR-A720-5.5K	132M	SF-V5RU3K3	FR-A720-5.5K	160L	SF-V5RU3K4	FR-A720-7.5K	
5.5kW	132M	SF-V5RU5K1	FR-A720-7.5K	160M	SF-V5RU5K3	FR-A720-7.5K	180L	SF-V5RU5K4	FR-A720-7.5K	
7.5kW	160M	SF-V5RU7K1	FR-A720-11K	160L	SF-V5RU7K3	FR-A720-11K	200L	SF-V5RU7K4	FR-A720-11K	
11kW	160L	SF-V5RU11K1	FR-A720-15K	180M	SF-V5RU11K3	FR-A720-15K	225S	SF-V5RU11K4	FR-A720-15K	
15kW	180M	SF-V5RU15K1	FR-A720-18.5K	180L	SF-V5RU15K3	FR-A720-18.5K	225S	SF-V5RU15K4	FR-A720-22K	
18.5kW	180L	SF-V5RU18K1	FR-A720-22K	200L	SF-V5RU18K3	FR-A720-22K	250MD	SF-THY	FR-A720-22K	
22kW	200L	SF-V5RU22K1	FR-A720-30K	200L	SF-V5RU22K3	FR-A720-30K	280MD	SF-THY	FR-A720-30K	
30kW	200L*3	SF-V5RU30K1	FR-A720-37K	225S*1	SF-V5RU30K3	FR-A720-37K	280MD	SF-THY	FR-A720-37K	
37kW	225S	SF-V5RU37K1	FR-A720-45K	250MD*1	SF-THY	FR-A720-45K	280MD	SF-THY	FR-A720-45K	
45kW	250MD	SF-THY	FR-A720-55K	250MD*1	SF-THY	FR-A720-55K	280MD	SF-THY	FR-A720-55K	
55kW	250MD	SF-THY	FR-A720-75K	280MD*1	SF-THY	FR-A720-75K	280L	SF-THY	FR-A720-75K	
Models surroun	ded by black	borders and 400	V class are deve	loped upon r	eceipt of order.			•		

*1

The maximum speed is 2400r/min. 80% output in the high-speed range. (The output is reduced when the speed is 2400r/min or more.) 90% output in the high-speed range. (The output is reduced when the speed is 1000r/min or more.) *2 *3

2.5 Connection of stand-alone option units

The inverter accepts a variety of stand-alone option units as required.

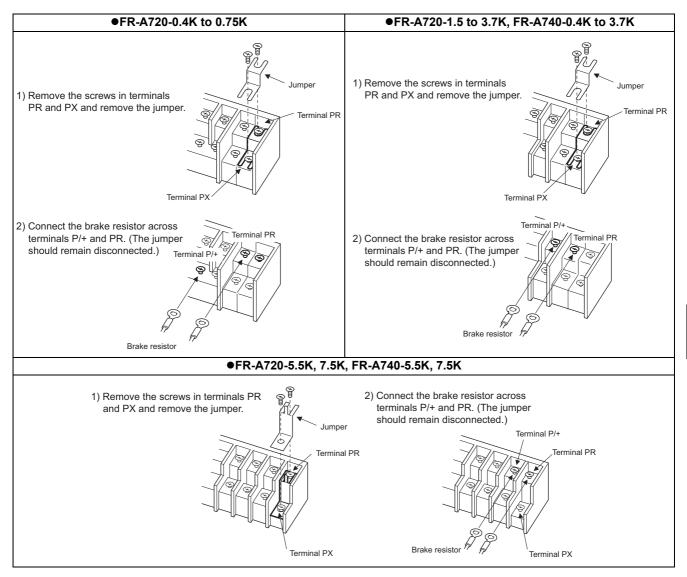
Incorrect connection will cause inverter damage or accident. Connect and operate the option unit carefully in accordance with the corresponding option unit manual.

2.5.1 Connection of the dedicated external brake resistor (FR-ABR)

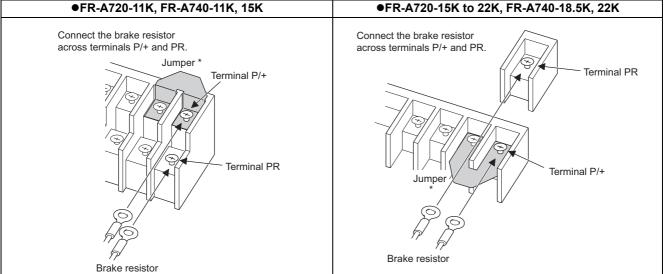
The built-in brake resistor is connected across terminals P/+ and PR. Fit the external dedicated brake resistor (FR-ABR) when the built-in brake resistor does not have enough thermal capability for high-duty operation (22K or lower). At this time, remove the jumper from across terminals PR and PX (7.5K or lower) and connect the dedicated brake resistor (FR-ABR) across terminals P/+ and PR.

(For the locations of terminals P/+ and PR, refer to the terminal block layout (page 11).)

Removing jumpers across terminals PR and PX disables the built-in brake resistor (power is not supplied).

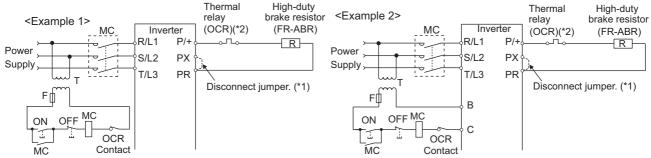

Note that the built-in brake resistor is not need to be removed from the inverter.

The lead wire of the built-in brake resistor is not need to be removed from the terminal.


Set parameters below.

• *Pr. 30 Regenerative function selection* = "1"

· Pr: 70 Special regenerative brake duty = "7.5K or lower: 10%, 11K or higher: 6%"



•FR-A720-11K, FR-A740-11K, 15K

Do not remove the jumper across terminal P/+ and P1 except when connecting a DC reactor (FR-HEL).

• When the regenerative brake transistor is damaged, the following sequence is recommended to prevent overheat and burnout of the brake resistor.

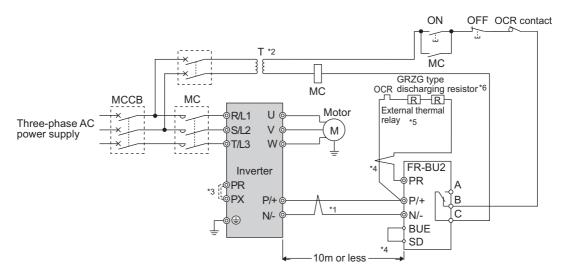
Since the 11K or higher inverter is not provided with the PX terminal, a jumper is not need to be removed. *1

*2 Refer to the table below for the type number of each capacity of thermal relay and the diagram below for the connection. (Always install a thermal relay when using the 11K or higher)

Power Supply Voltage	High-Duty Brake Resistor	Thermal Relay Type (Mitsubishi product)	Contact Rating	
	FR-ABR-0.4K	TH-N20CXHZ-0.7A		
	FR-ABR-0.75K	TH-N20CXHZ-1.3A		
	FR-ABR-2.2K	TH-N20CXHZ-2.1A	7	
	FR-ABR-3.7K	TH-N20CXHZ-3.6A	7	
200V	FR-ABR-5.5K	TH-N20CXHZ-5A		
	FR-ABR-7.5K	TH-N20CXHZ-6.6A	7	
	FR-ABR-11K	TH-N20CXHZ-11A	7	
	FR-ABR-15K	TH-N20CXHZ-11A		
	FR-ABR-22K	TH-N60-22A	- 110V 5AAC,	
	FR-ABR-H0.4K	TH-N20CXHZ-0.24A	220V 2AAC(AC-11 class) 110V 0.5ADC,	
	FR-ABR-H0.75K	TH-N20CXHZ-0.35A	220V 0.25ADC(DC-11 class)	
	FR-ABR-H1.5K	TH-N20CXHZ-0.9A		
	FR-ABR-H2.2K	TH-N20CXHZ-1.3A		
400V	FR-ABR-H3.7K	TH-N20CXHZ-2.1A	7	
400 V	FR-ABR-H5.5K	TH-N20CXHZ-2.5A		
	FR-ABR-H7.5K	TH-N20CXHZ-3.6A	7	
	FR-ABR-H11K	TH-N20CXHZ-6.6A	7	
	FR-ABR-H15K	TH-N20CXHZ-6.6A	7	
	FR-ABR-H22K	TH-N20-9A	7	

inverter To the ABR rminal

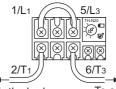
= CAUTION

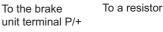

The brake resistor connected should only be the dedicated brake resistor.

- The jumper across terminals PR and PX (7.5K or lower) must be disconnected before connecting the dedicated brake resistor. Doing so may damage the inverter.
- Brake resistor cannot be used with the brake unit, high power factor converter, power supply regeneration converter, etc.

2.5.2 Connection of the brake unit (FR-BU2)

Connect the brake unit (FR-BU2) as shown below to improve the braking capability at deceleration.

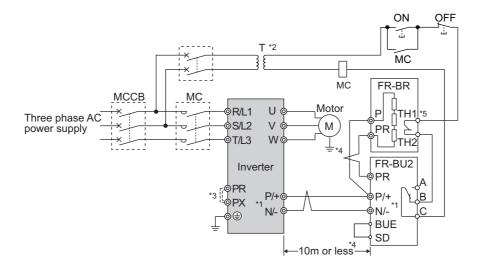

(1) Connection example with the GRZG type discharging resistor



- *1 Connect the inverter terminals (P/+, N/-) and brake unit (FR-BU2) terminals so that their terminal names match with each other. (Incorrect connection will damage the inverter and brake unit.)
- *2 When the power supply is 400V class, install a stepdown transformer.
- *3 Be sure to remove the jumper across terminals PR and PX when using the FR-BU2 with the inverter of 7.5K or lower.
- *4 Keep a wiring distance of within 5m between the inverter, brake unit (FR-BU2) and discharging resistor. Even when the wiring is twisted, the cable length must not exceed 10m.
- *5 It is recommended to install an external thermal relay to prevent overheat of discharging resistors.
- *6 Refer to FR-BU2 manual for connection method of discharging resistor.

<Recommended external thermal relay>

Brake Unit	Discharging Resistor	Recommended External Thermal Relay
FR-BU2-1.5K	GZG 300W-50Ω (one)	TH-N20CXHZ 1.3A
FR-BU2-3.7K	GRZG 200-10 Ω (three in series)	TH-N20CXHZ 3.6A
FR-BU2-7.5K	GRZG 300-5 Ω (four in series)	TH-N20CXHZ 6.6A
FR-BU2-15K	GRZG 400-2 Ω (six in series)	TH-N20CXHZ 11A
FR-BU2-H7.5K	GRZG 200-10 Ω (six in series)	TH-N20CXHZ 3.6A
FR-BU2-H15K	GRZG 300-5 Ω (eight in series)	TH-N20CXHZ 6.6A
FR-BU2-H30K	GRZG 400-2 Ω (twelve in series)	TH-N20CXHZ 11A



CAUTION

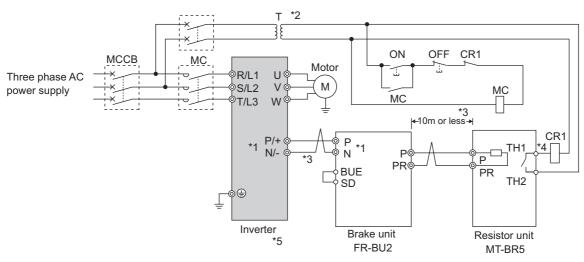
- Set "1" in *Pr. 0 Brake mode selection* of the FR-BU2 to use GRZG type discharging resistor.
- · Do not remove the jumper across terminal P/+ and P1 except when connecting a DC reactor (FR-HEL).

(2) FR-BR-(H) connection example with resistor unit

- *1 Connect the inverter terminals (P/+, N/-) and brake unit (FR-BU2) terminals so that their terminal names match with each other. (Incorrect connection will damage the inverter and brake unit.)
- *2 When the power supply is 400V class, install a stepdown transformer.
- *3 Be sure to remove the jumper across terminals PR and PX when using the FR-BU with the inverter of 7.5K or lower.
- *4 The wiring distance between the inverter, brake unit (FR-BU) and resistor unit (FR-BR) should be within 5m. Even when the wiring is twisted, the cable length must not exceed 10m.
- *5 The contact between TH1 and TH2 is closed in the normal status and is open at a fault.

— CAUTION

Do not remove the jumper across terminal P/+ and P1 except when connecting a DC reactor (FR-HEL).


(3) Connection example with MT-BR5 type resistor unit

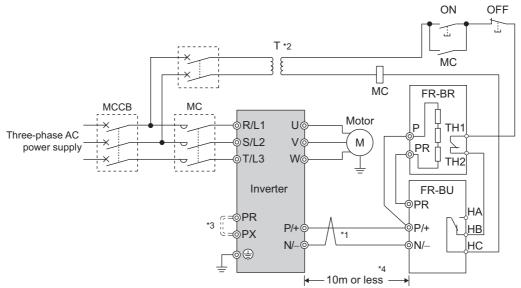
After making sure that the wiring is correct, set the following parameters:

Pr. 30 Regenerative function selection = "1"

Pr. 70 Special regenerative brake duty = "0 (initial value)"

Set *Pr. 0 Brake mode selection* = "2" in the brake unit FR-BU2.

- *1 Connect the inverter terminals (P/+, N/-) and brake unit (FR-BU2) terminals so that their terminal names match with each other. (Incorrect connection will damage the inverter and brake unit.)
- *2 When the power supply is 400V class, install a stepdown transformer.
- *3 The wiring distance between the inverter, brake unit (FR-BU2) and resistor unit (MT-BR5) should be within 5m. If twisted wires are used, the distance should be within 10m.
- *4 The contact between TH1 and TH2 is open in the normal status and is closed at a fault.
- *5 CN8 connector used with the MT-BU5 type brake unit is not used.


CAUTION

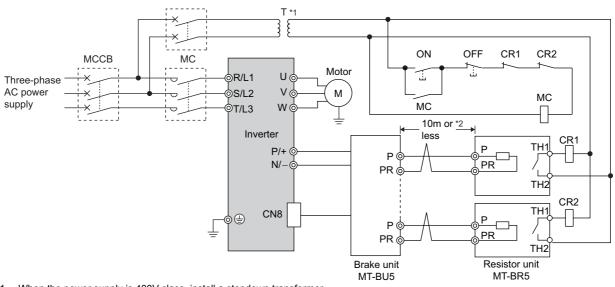
• The stall prevention (overvoltage), oL, does not occur while *Pr.30 Regenerative function selection* = "1" and *Pr.70 Special regenerative brake duty* = "0% (initial value)."

2.5.3 Connection of the brake unit (FR-BU/MT-BU5)

When connecting the brake unit (FR-BU(H)/MT-BU5) to improve the brake capability at deceleration, make connection as shown below.

(1) Connection with the FR-BU (55K or lower)

- *1 Connect the inverter terminals (P/+, N/-) and brake unit (FR-BU (H)) terminals so that their terminal signals match with each other. (Incorrect connection will damage the inverter.)
- *2 When the power supply is 400V class, install a stepdown transformer.
- *3 Be sure to remove the jumper across terminals PR and PX when using the FR-BU with the inverter of 7.5K or lower.
- *4 The wiring distance between the inverter, brake unit (FR-BU) and resistor unit (FR-BR) should be within 5m. If twisted wires are used, the distance should be within 10m.

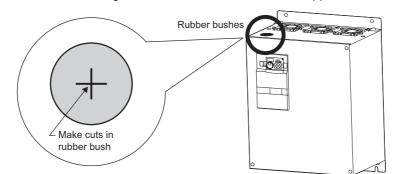

- If the transistors in the brake unit should become faulty, the resistor can be unusually hot, causing a fire. Therefore, install a
 magnetic contactor on the inverter's input side to configure a circuit so that a current is shut off in case of fault.
- Do not remove the jumper across terminal P/+ and P1 except when connecting a DC reactor (FR-HEL).

INSTALLATION AND WIRING

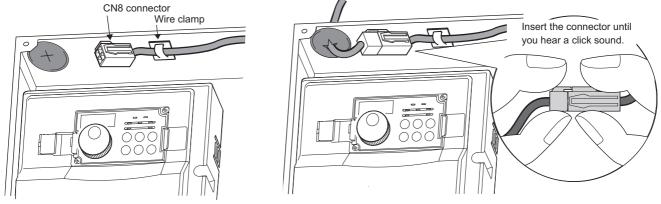
(2) Connection with the MT-BU5 (75K or higher)

After making sure that the MT-BU5 is properly connected, set the following parameters. *Pr. 30 Regenerative function selection* = "1"

Pr. 70 Special regenerative brake duty = "10%"


*1 When the power supply is 400V class, install a stepdown transformer.
 *2 The wiring length between the resistor unit and brake resistor should be 10m maximum when wires are twisted and 5m maximum when wires are not twisted.

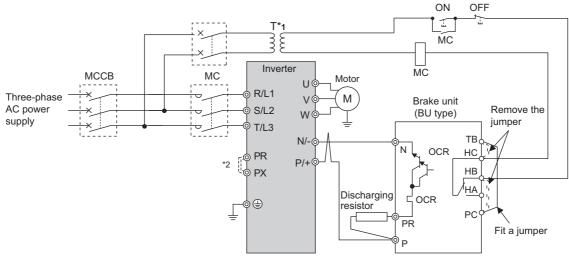
= CAUTION


- · Install the brake unit in a place where a cooling air reaches the brake unit heatsink and within a distance of the cable supplied with the brake unit reaches the inverter.
- For wiring of the brake unit and inverter, use an accessory cable supplied with the brake unit. Connect the main circuit cable to the inverter terminals P/+ and N/- and connect the control circuit cable to the CN8 connector inside by making cuts in the rubber bush at the top of the inverter for leading the cable.
- The brake unit which uses multiple resistor units has terminals equal to the number of resistor units. Connect one resistor unit to one pair of terminal (P, PR).

<Inserting the CN8 connector>

- Make cuts in rubber bush of the upper portion of the inverter and lead a cable.
- 1) Make cuts in the rubber bush for leading the CN8 connector cable with a nipper or cutter knife.

2) Insert a connector on the MT-BU5 side through a rubber bush to connect to a connector on the inverter side.

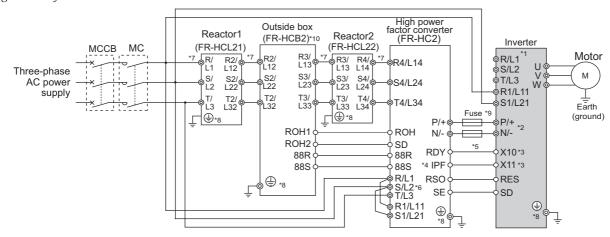


- CAUTION :

Clamp the CN8 connector cable on the inverter side with a wire clamp securely. Do not connect the MT-BU5 to a CN8 connector of the FR-A740-55K.

2.5.4 Connection of the brake unit (BU type)

Connect the brake unit (BU type) correctly as shown below. Incorrect connection will damage the inverter. Remove the jumper across terminals HB-PC and terminals TB-HC of the brake unit and fit it across terminals PC-TB.


- *1 When the power supply is 400V class, install a stepdown transformer.
- *2 For capacity 7.5K or lower, remove the jumper across terminals PR and PX.

= CAUTION =

- The wiring distance between the inverter, brake unit and resistor unit should be within 2m. If twisted wires are used, the distance should be within 5m.
- If the transistors in the brake unit should become faulty, the resistor can be unusually hot, causing a fire. Therefore, install a magnetic contactor on the inverter's power supply side to configure a circuit so that a current is shut off in case of fault.
 Do not remove the jumper across terminal P/+ and P1 except when connecting a DC reactor (FR-HEL).

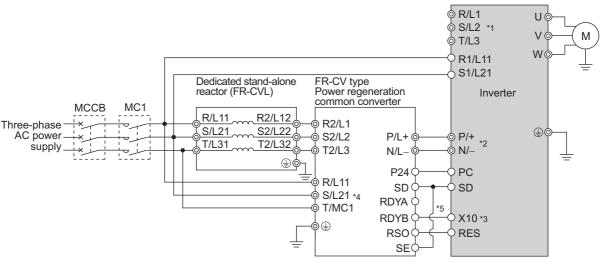
2.5.5 Connection of the high power factor converter (FR-HC2)

When connecting the high power factor converter (FR-HC2) to suppress power harmonics, perform wiring securely as shown below. Incorrect connection will damage the high power factor converter and the inverter. Perform the wiring securely, and set the following parameters: Pr.19 Base frequency voltage = "rated motor current" and Pr.30Regenerative function selection = "2".

- *1 Remove the jumpers between terminals R/L1 and R/L11 as well as between S/L2 and S1/L21, and connect the power supply for the control circuit to across terminals R1/L11 and S1/L21. Do not connect anything to power input terminals (R/L1, S/L2, T/L3). Incorrect connection will damage the inverter. (E.OPT (option fault) will occur. (*Refer to page 161*))
- *2 Do not install an MCCB for the terminals P/+ and N/- (between terminals P and P/+ or between N and N/-). Connecting the opposite polarity of terminals N/- and P/+ will damage the inverter.
- *3 Assign the X10 (X11) signal to a terminal using any of *Pr. 178 to Pr. 189 (input terminal function selection). (Refer to Chapter 4 of the Instruction Manual (Applied).)*

For RS-485 or any other communication operation where the start command is only transmitted once, use the X11 signal to save the operation mode at the time of an instantaneous power failure.

- *4 Assign the IPF signal to an FR-HC2 terminal. (*Refer to the Instruction Manual of FR-HC2*.)
- *5 Always connect the FR-HC2 terminal RDY to a terminal where the X10 or MRS signal is assigned in the inverter. Always connect the FR-HC2 terminal SE to the inverter terminal SD. Not connecting these terminals may damage the FR-HC2.
- *6 Always connect the R/L1, S/L2, and T/L3 terminals of FR-HC2 to the power supply. Operating the inverter without connecting them will damage FR-HC2.
- *7 Do not install an MCCB or MC between the reactor 1 terminals (R/L1, S/L2, T/L3) and FR-HC2 terminals (R4/L14, S4/L24, T4/L34). It will not operate properly.
- *8 Securely perform grounding (earthing) by using the ground (earth) terminal.
- *9 Installation of a fuse is recommended. (*Refer to the Instruction Manual of FR-HC2.*)
- *10 Outside box is not available for FR-HC2-H280K or higher. Connect filter capacitors, inrush current limit resistors, and magnetic contactors. (*Refer to the Instruction Manual of FR-HC2.*)



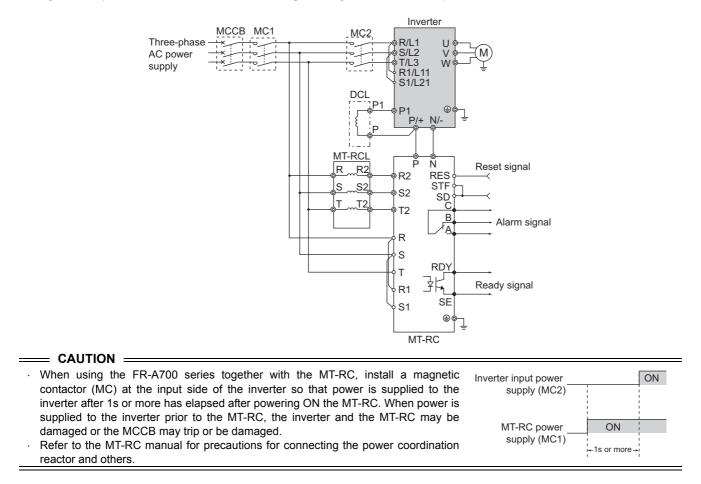
• The voltage phases of terminals R/L1, S/L2, and T/L3 and the voltage phases of terminals R4/L14, S4/L24, and T4/L34 must be matched.

Match the control logic (sink logic / source logic) of the high power factor converter and the inverter. (*Refer to page 22*)
 Do not connect a DC reactor (FR-HEL) to the inverter when FR-HC2 is connected.

2.5.6 Connection of the power regeneration common converter (FR-CV)

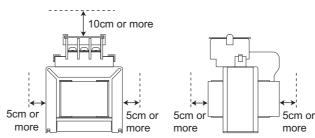
When connecting the power regeneration common converter (FR-CV), make connection so that the inverter terminals (P/+, N/-) and the terminal symbols of the power regeneration common converter (FR-CV) are the same (55K or lower). After making sure that the wiring is correct, set "2" in *Pr. 30 Regenerative function selection*.

- *1 Remove the jumpers across terminals R/L1 and R1/L11 and S/L2 and S1/L21 of the inverter, and connect the control circuit power supply across terminals R1/L11 and S1/L21. Always keep the power input terminals R/L1, S/L2, T/L3 open. Incorrect connection will damage the inverter. (E.OPT (option alarm) will occur. (*Refer to page 161*))
- *2 Do not insert the MCCB between the terminals P/+ and N/- (between P/L+ and P/+, between N/L- and N/-). Opposite polarity of terminals N/-, P/+ will damage the inverter.
- *3 Assign the terminal for X10 signal using any of Pr. 178 to Pr. 189 (input terminal function selection). (Refer to page 125)
- *4 Be sure to connect the power supply and terminals R/L11, S/L21, T/MC1.
- Operating the inverter without connecting them will damage the power regeneration common converter. *5 Always connect the terminal RDYB (of FR-CV) to a terminal where the X10 or MRS signal is assigned in the
- *5 Always connect the terminal RDYB (of FR-CV) to a terminal where the X10 or MRS signal is assigned in the inverter. Always connect the terminal SE (of FR-CV) to the terminal SD (of the inverter). Not doing so may damage FR-CV.

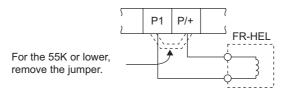

= CAUTION =

The voltage phases of terminals R/L11, S/L21, T/MC1 and terminals R2/L1, S2/L2, T2/L3 must be matched.

Use sink logic (factory setting) when the FR-CV is connected. The FR-CV cannot be connected when source logic is selected.
 Do not connect a DC reactor (FR-HEL) to the inverter when FR-CV is connected.


2.5.7 Connection of power regeneration converter (MT-RC)

When connecting a power regeneration converter (MT-RC), perform wiring securely as shown below. Incorrect connection will damage the regeneration converter and inverter (75K or higher). After connecting securely, set "1" in *Pr*: *30 Regenerative function selection* and "0" in *Pr*: *70 Special regenerative brake duty*.


2.5.8 Connection of the power factor improving DC reactor (FR-HEL)

(1) Keep the surrounding air temperature within the permissible range (-10°C to +50°C). Keep enough clearance around the reactor because it heats up. (Take 10cm or more clearance on top and bottom and 5cm or more on left and right regardless of the installation direction.)

(2) When using the DC reactor (FR-HEL), connect it between terminals P1 and P/+. For the 55K or lower, the jumper connected across terminals P1 and P/+ must be removed. Otherwise, the reactor will not exhibit its performance.

For the 75K or higher, a DC reactor is supplied. Always install the reactor.

(3) Since the DC reactor (FR-HEL) is electrically connected to the enclosure through mounting screws, the DC reactor is earthed (grounded) by being securely mounted to the enclosure. However, if the DC reactor is not earthed (grounded) securely enough, an earthing (grounding) cable may be used. When you are using an earthing (grounding) cable with a FR-HEL-(H)55K or lower capacity inverter, wire the cable

When you are using an earthing (grounding) cable with a FR-HEL-(H)55K or lower capacity inverter, wire the cable to the mounting hole where varnish is removed. (Refer to the Instruction Manual of FR-HEL.)

For FR-HEL-(H)75K or higher, use an earth (ground) terminal to perform earthing (grounding). (Refer to page 192)

CAUTION _____

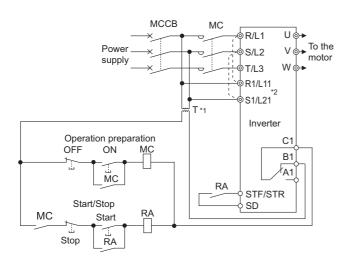
- The wiring distance should be within 5m.
- The size of the cables used should be equal to or larger than that of the power supply cables (R/L1, S/L2, T/L3) and the earthing (grounding) cable. (*Refer to page 14*)
- Do not connect a DC reactor (FR-HEL) to the inverter when FR-HC2 or FR-CV is connected.

2.6 Power-off and magnetic contactor (MC)

(1) Inverter input side magnetic contactor (MC)

On the inverter input side, it is recommended to provide an MC for the following purposes.

(Refer to page 4 for selection.)


1) To release the inverter from the power supply when a fault occurs or when the drive is not functioning (e.g. emergency stop operation). For example, MC avoids overheat or burnout of the brake resistor when heat capacity of the resistor is insufficient or brake regenerative transistor is damaged with short while connecting an optional brake resistor.

2) To prevent any accident due to an automatic restart at restoration of power after an inverter stop made by a power failure3) To separate the inverter from the power supply to ensure safe maintenance and inspection work

If using an MC for emergency stop during operation, select an MC regarding the inverter input side current as JEM1038-AC-3 class rated current.

REMARKS

Since repeated inrush currents at power ON will shorten the life of the converter circuit (switching life is about 1,000,000 times. (For the 200V class 30K or higher, switching life is about 500,000)), frequent starts and stops of the MC must be avoided. Turn on/ off the inverter start controlling terminals (STF, STR) to run/stop the inverter.

Inverter start/stop circuit example

As shown on the left, always use the start signal (ON or OFF of STF (STR) signal) to make a start or stop.

- *1 When the power supply is 400V class, install a step-down transformer.
- *2 Connect the power supply terminals R1/L11, S1/L21 of the control circuit to the primary side of the MC to hold an alarm signal when the inverter's protective circuit is activated. At this time, remove jumpers across terminals R/L1 and R1/L11 and S/L2 and S1/L21. (Refer to *page 17* for removal of the jumper.)

(2) Handling of the inverter output side magnetic contactor

Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When an MC is provided to switch to a commercial power supply, for example, it is recommended to

use the electronic bypass function *Pr. 135 to Pr. 139 (Chapter 4 of* the *Instruction Manual (Applied)).* (The commercial power supply operation cannot be performed with the vector control dedicated motor (SF-V5RU, SF-THY) or with the IPM motor.)

IPM motor is a synchronous motor with high-performance magnets embedded in the rotor. Motor terminals hold high-voltage while the motor is running even after the inverter power is turned OFF. Before wiring or inspection, the motor must be confirmed to be stopped. When the motor is driven by the load in applications such as fan and blower, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise you may get an electric shock.

2.7 Precautions for use of the inverter

The FR-A700 series is a highly reliable product, but using incorrect peripheral circuits or incorrect operation/handling methods may shorten the product life or damage the product. Before starting operation, always recheck the following items.

- (1) Use crimping terminals with insulation sleeve to wire the power supply and motor.
- (2) Application of power to the output terminals (U, V, W) of the inverter will damage the inverter. Never perform such wiring.
- (3) After wiring, wire offcuts must not be left in the inverter. Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean. When drilling mounting holes in an enclosure etc., take care not to allow chips and other foreign matter to enter the inverter.
- (4) Use cables of the appropriate size to make a voltage drop of 2% maximum. If the wiring distance is long between the inverter and motor, a main circuit cable voltage drop will cause the motor torque to decrease especially at the output of a low frequency. Refer to *page 14* for the recommended cable sizes.

(5) The total wiring length should be within the prescribed length.

Especially for long distance wiring, the fast-response current limit function may decrease, or the equipment connected to the secondary side may malfunction. This is caused by a charging current due to the stray capacity of the wiring. Therefore, note the overall wiring length. (*Refer to page 16.*)

(6) Electromagnetic wave interference

The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. In this case, set the noise filter valid to minimize interference. (*Refer to page 10*)

(7) Do not install a power factor correction capacitor, surge suppressor or radio noise filter on the inverter output side.

This will cause the inverter to trip or the capacitor, and surge suppressor to be damaged. If any of the above devices are installed, immediately remove it.

(8) For some short time after the power is switched OFF, a high voltage remains in the smoothing capacitor. When accessing the inverter for inspection, wait for at least 10 minutes after the power supply has been switched OFF, and then make sure that the voltage across the main circuit terminals P/+ and N/- of the inverter is no more than 30VDC using a tester.

(9) A short circuit or earth (ground) fault on the inverter output side may damage the inverter modules.

- Fully check the insulation resistance of the circuit prior to inverter operation since repeated short circuits may damage the inverter modules. These short circuits may be caused by peripheral circuit inadequacy, an earth (ground) fault caused by wiring inadequacy, or reduced motor insulation resistance.
- Fully check the to-earth (ground) insulation and phase to phase insulation of the inverter output side before power-on. Especially for an old motor or use in a hostile atmosphere, securely check the motor insulation resistance etc.

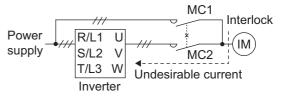
(10) Do not use the inverter input side magnetic contactor to start/stop the inverter.

Since repeated inrush currents at power ON will shorten the life of the converter circuit (switching life is about 1,000,000 times. (For the 200V class 30K or higher, switching life is about 500,000)), frequent starts and stops of the MC must be avoided.

Always use the start signal (ON/OFF of STF and STR signals) to start/stop the inverter. (Refer to page 9)

(11) Across P/+ and PR terminals, connect only an external brake resistor.

Do not connect a mechanical brake.


(12) Do not apply a voltage higher than the permissible voltage to the inverter I/O signal circuits.

Application of a voltage higher than the permissible voltage to the inverter I/O signal circuits or opposite polarity may damage the I/O devices. Especially check the wiring to prevent the speed setting potentiometer from being connected incorrectly to short across terminals 10E and 5.

(13) Provide electrical and mechanical interlocks for MC1 and MC2 which are used for bypass operation.

When the wiring is incorrect or if there is an electronic bypass circuit as shown on the right, the inverter will be damaged by leakage current from the power supply when it is connected to the inverter U, V, W terminals due to arcs generated at the time of switch-over or chattering caused by a sequence error. (The commercial power supply operation cannot be performed with the vector control dedicated motor (SF-V5RU, SF-THY) or with the IPM motor.)

- (14) If the machine must not be restarted when power is restored after a power failure, provide a magnetic contactor in the inverter's input side and also make up a sequence which will not switch ON the start signal. If the start signal (start switch) remains ON after a power failure, the inverter will automatically restart as soon as the power is restored.
- (15) A motor with encoder is necessary for vector control. In addition, connect the encoder directly to the backlashfree motor shaft. (An encoder is not necessary for Real sensorless vector control.)

(16) Inverter input side magnetic contactor (MC)

On the inverter input side, connect a MC for the following purposes. (Refer to page 4 for selection.)

- 1)To release the inverter from the power supply when a fault occurs or when the drive is not functioning (e.g. emergency stop operation). For example, MC avoids overheat or burnout of the brake resistor when heat capacity of the resistor is insufficient or brake regenerative transistor is damaged with short while connecting an optional brake resistor.
- 2)To prevent any accident due to an automatic restart at restoration of power after an inverter stop made by a power failure

3)To separate the inverter from the power supply to ensure safe maintenance and inspection work.

If using an MC for emergency stop during operation, select an MC regarding the inverter input side current as JEM1038-AC-3 class rated current.

(17) Handling of inverter output side magnetic contactor

Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When MC is provided for switching to the commercial power supply, for example, switch it ON/OFF after the inverter and motor have stopped.

IPM motor is a synchronous motor with high-performance magnets embedded in the rotor. Motor terminals hold highvoltage while the motor is running even after the inverter power is turned OFF. Before wiring or inspection, the motor must be confirmed to be stopped. When the motor is driven by the load in applications such as fan and blower, a lowvoltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise you may get an electric shock.

(18) Countermeasures against inverter-generated EMI

If electromagnetic noise generated from the inverter causes frequency setting signal to fluctuate and motor rotation speed to be unstable when changing motor speed with analog signal, the following countermeasures are effective.

- · Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do not bundle them.
- · Run signal cables as far away as possible from power cables (inverter I/O cables).
- · Use shield cables as signal cables.
- · Install a ferrite core on the signal cable (Example: ZCAT3035-1330 TDK).

(19) Instructions for overload operation

When performing an operation of frequent start/stop with the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a continuous flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Decreasing current may increase the life. However, decreasing current will result in insufficient torque and the inverter may not start. A counter action for this is to raise the permissible current level by increasing the inverter capacity (up to 2 ranks) when using an induction motor, and by increasing the inverter and IPM motor capacities when using an IPM motor.

(20) Make sure that the specifications and rating match the system requirements.

2.8 Failsafe of the system which uses the inverter

When a fault occurs, the inverter trips to output a fault signal. However, a fault output signal may not be output at an inverter fault occurrence when the detection circuit or output circuit fails, etc. Although Mitsubishi assures best quality products, provide an interlock which uses inverter status output signals to prevent accidents such as damage to machine when the inverter fails for some reason and at the same time consider the system configuration where failsafe from outside the inverter, without using the inverter, is enabled even if the inverter fails.

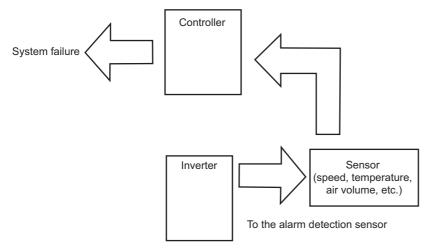
(1) Interlock method which uses the inverter status output signals

By combining the inverter status output signals to provide an interlock as shown below, an inverter alarm can be detected.

No.	Interlock Method	Check Method	Used signals	Refer to Page
1)	Inverter protective function operation	Operation check of an alarm contact Circuit error detection by negative logic	Fault output signal (ALM signal)	Refer to Chapter 4 of the Instruction Manual (Applied).
2)	Inverter running status	Operation ready signal check	Operation ready signal (RY signal)	Refer to Chapter 4 of the Instruction Manual (Applied).
3)	Inverter running status	Logic check of the start signal and running signal	Start signal (STF signal, STR signal) Running signal (RUN signal)	Refer to Chapter 4 of the Instruction Manual (Applied).
4)	Inverter running status	Logic check of the start signal and output current	Start signal (STF signal, STR signal) Output current detection signal (Y12 signal)	Refer to Chapter 4 of the Instruction Manual (Applied).

(2) Backup method outside the inverter

Even if the interlock is provided by the inverter status signal, enough failsafe is not ensured depending on the failure status of the inverter itself. For example, when the inverter CPU fails, even if the interlock is provided using the inverter fault signal, start signal and RUN signal, there is a case where a fault signal is not output and RUN signal is kept output even if an inverter fault occurs.

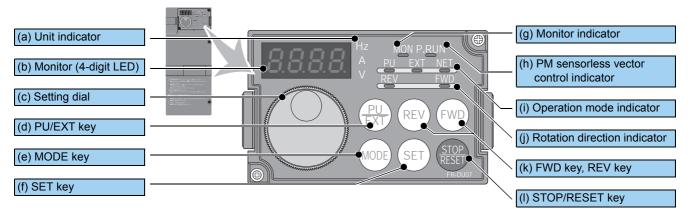

Provide a speed detector to detect the motor speed and current detector to detect the motor current and consider the backup system such as checking up as below according to the level of importance of the system.

1) Start signal and actual operation check

Check the motor running and motor current while the start signal is input to the inverter by comparing the start signal to the inverter and detected speed of the speed detector or detected current of the current detector. Note that the motor current runs as the motor is running for the period until the motor stops since the inverter starts decelerating even if the start signal turns off. For the logic check, configure a sequence considering the inverter deceleration time. In addition, it is recommended to check the three-phase current when using the current detector.

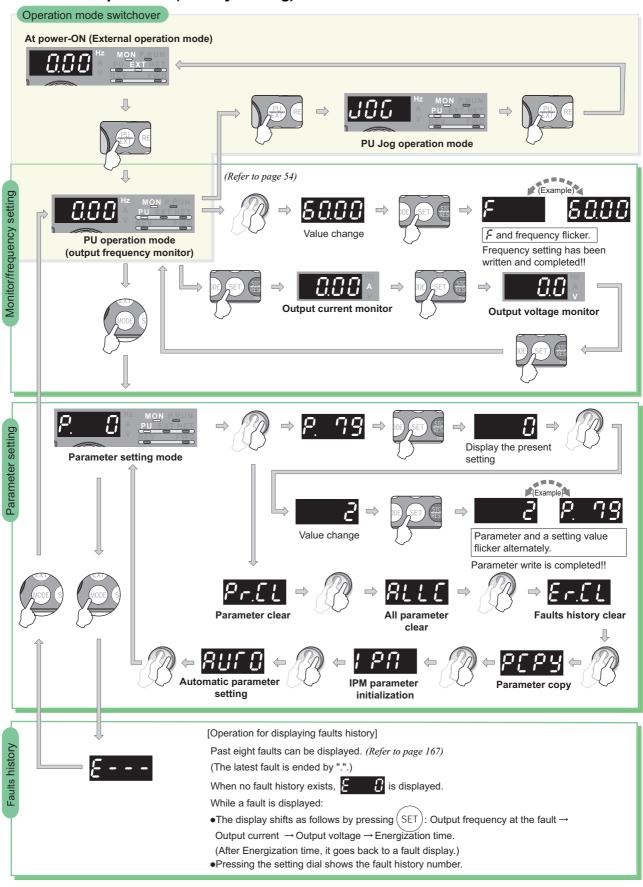
2) Command speed and actual operation check

Check if there is no gap between the actual speed and commanded speed by comparing the inverter speed command and detected speed of the speed detector.



3 DRIVING THE MOTOR

3.1 Operation panel (FR-DU07)


3.1.1 Parts of the operation panel (FR-DU07)

To mount the operation panel (FR-DU07) on the enclosure surface, refer to page 25.

No.	Component	Name	Description
(a)	Hz A V	Unit indicator	Hz: Lit to indicate frequency. (Flickers when the set frequency monitor is displayed.) A: Lit to indicate current. V: Lit to indicate voltage.
(b)	8.8.8.8.	Monitor (4-digit LED)	Shows the frequency, parameter number, etc. (To monitor the output power, set frequency and other items, set <i>Pr.52</i> .)
(c)	0	Setting dial	 The dial of the Mitsubishi inverters. The setting dial is used to change the frequency and parameter settings. Press the setting dial to perform the following operations: To display a set frequency in the monitor mode To display the present setting during calibration To display a fault history number in the faults history mode
(d)	(PU) EXT	PU/EXT key	Used to switch between the PU and External operation modes. To use the External operation mode (operation using a separately connected frequency setting potentiometer and start signal), press this key to light up the EXT indicator. PU: PU operation mode EXT: External operation mode Used to cancel the PU stop also.
(e)	MODE	MODE key	Used to switch among different setting modes. Holding this key for 2 seconds locks the operation. The key lock is invalid when $Pr.161 = "0$ (initial setting)." (<i>Refer to page 52.</i>)
(f)	SET	SET key	Used to enter a setting. If pressed during the operation, monitored item changes as the following: $Uutput frequency \rightarrow Output current \rightarrow Output voltage*$ * Energy saving monitor is displayed when the energy saving monitor is set with <i>Pr. 52</i> .
(g)	MON	Monitor indicator	Lit to indicate the monitor mode.
(h)	P.RUN	PM sensorless vector control indicator	Lit to indicate the PM sensorless vector control. The indicator flickers when the IPM motor test operation is selected.
(i)	PU EXT NET	Operation mode indicator	PU: Lit to indicate the PU operation mode. EXT: Lit to indicate the External operation mode. (EXT is lit at power-ON in the initial setting.) NET: Lit to indicate the Network operation mode. PU and EXT: Lit to indicate EXT/PU combined operation mode 1 and 2
(i)	REV FWD	Rotation direction indicator	FWD: Lit to indicate the forward rotation. REV: Lit to indicate the reverse rotation. Lit: When the forward/reverse operation is being performed. Flickers: When the frequency command is not given even if the forward/reverse command is given. When the frequency command is lower than the starting frequency. When the MRS signal is being input.
(k)	FWD REV	FWD key, REV key	FWD key: Used to give a start command in forward rotation. REV key: Used to give a start command in reverse rotation.
(I)	STOP RESET	STOP/RESET key	Used to stop operation commands. Used to reset a fault when the protective function (fault) is activated.

3.1.2 Basic operation (factory setting)

3.1.3 Operation lock (Press [MODE] for an extended time (2s))

Operation using the setting dial and key of the operation panel can be set invalid to prevent parameter change, and unexpected start or frequency setting.

• Set "10 or 11" in *Pr. 161*, then press (MODE) for 2s to make the setting dial and key operation invalid.

• When the setting dial and key operation are invalid, **HILL d** appears on the operation panel.

If dial or key operation is attempted while dial and key operation are invalid, **H**[]] of appears. (When dial or key is not touched for 2s, the monitor display appears.)

 \cdot To make the setting dial and key operation valid again, press (MODE) for 2s.

POINT

Set "10 or 11" (key lock valid) in Pr:161 Frequency setting/key lock operation selection.

	Operation
1.	Screen at power-ON The monitor display appears.
2.	Operation mode change Press $\begin{pmatrix} PU \\ EXT \end{pmatrix}$ to choose the PU operation mode. [PU] indicator is lit.
3.	Parameter setting mode Press (MODE) to choose the parameter setting mode. (The parameter number read previously appears.)
4.	Selecting the parameter number Turn O until <i>P. 15 1</i> (<i>Pr. 161</i>) appears. Press SET to read the present set value. "[] " (initial value) appears.
5.	Changing the setting value Turn to O change it to the setting value " IO". Press (SET) to set. " IO" and " P. IS I " flicker alternately.
6.	Press (MODE) for 2s to activate the key lock. HIL d appears.
	Functions valid even in the operation lock status Stop and reset with RESET.

Release the operation lock to release the PU stop by key operation.

3.1.4 Monitoring of output current and output voltage

F	POINT
	display of output frequency, output current and output voltage can be changed by pushing (SET) during ing mode.
	Operation
1.	Press (MODE) during operation to choose the output frequency monitor. [Hz] indicator is lit.
2.	Independently of whether the inverter is running in any operation mode or at a stop, the output current monitor appears by pressing (SET) . [A] indicator is lit.
3.	Press (SET) to show the output voltage monitor. [V] indicator is lit.

REMARKS

Monitored item can be changed from output voltage to other items such as output power and set frequency by setting *Pr. 52*. *Refer to Chapter 4 of* the *Instruction Manual (Applied)*.

3.1.5 First priority monitor

Hold down (SET) for 1s to set monitor description to be appeared first in the monitor mode.

(To return to the output frequency monitor, hold down (SET) for 1s after displaying the output frequency monitor.)

3.1.6 Displaying the set frequency

Press the setting dial () in the PU operation mode or in the External/PU combined operation mode 1 (*Pr. 79* =

"3") to show the set frequency.

3.1.7 Changing the parameter setting value

Changing example Change the *Pr. 1 Maximum frequency*.

	Operation							
1.	Screen at power-ON							
••	The monitor display appears.							
-	Operation mode change							
2.	Press $\left(\frac{PU}{EXT}\right)$ to choose the PU operation mode. [PU] indicator is lit.							
-	Parameter setting mode							
3.	Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)							
_	Selecting the parameter							
4.	Turn O until P / (Pr. 1) appears. Press SET to read the present set value. " 1200" (initial value) appears.							
	Changing the setting value							
	Turn 🔘 to change it to the set value "&::							
5.	·By turning O, you can read another parameter.							
5.	•Press (SET) to show the setting again.							
	•Press (SET) twice to show the next parameter.							
	•Press (MODE) twice to return the monitor to frequency monitor.							
?	Er 부 to <mark>돈 - '</mark> are displayed Why?							
	الله الله الله الله المعامة ال							
	Er 2 appearsWrite error during operation							
	Er 3 appearsCalibration error							
	ЕсЧ appears Mode designation error							
For	details refer to page 151.							
REN	IARKS							
The	number of digits displayed on the operation panel (FR-DU07) is four.							
lf th	e values to be displayed have five digits or more including decimal places, the fifth or later numerals cannot be displayed nor							

set.

(Example) When Pr. 1

When 60Hz is set, 60.00 is displayed.

When 120Hz is set, 120.0 is displayed and second decimal place is not displayed nor set.

Press	 The monitor display appears. Operation mode change Press Pre		Operation
 Press Press Pr	 2. Press (PU)/(SF) to choose the PU operation mode. [PU] indicator is lit. Parameter setting mode Press (MODE) to choose the parameter setting mode. (The parameter number read previously appears.) Selecting the parameter number Turn (O) until "P_r f [L parameter clear" ("R[L[all parameter clear") appears. Press (SET) to read present set value. "f" (initial value) appears. Parameter clear Turn (O) to change it to the set value " ". Press (SET) to set. " " and "P_r f [L" flicker alternately after parameters are cleared. . By turning (O), you can read another parameter. . Press (SET) to show the setting again. . Press (SET) twice to show the next parameter. . Press (SET) twice to show the next parameter. . Press (SET) twice to show the next parameter. 	1.	•
 Parameter setting mode Press word be to choose the parameter setting mode. (The parameter number read previously appears.) Selecting the parameter number Turn until "Prf[parameter clear" ("R[[[all parameter clear"] appears. Press SET] to read present set value. "G" (initial value) appears. Parameter clear Turn to change it to the set value " ". Press SET] to set. " " and "Prf["ficker alternately after parameters are cleared. .By turning , you can read another parameter. .Press SET] to show the setting again. .Press SET] to show the next parameter. 	 Parameter setting mode Press (note) to choose the parameter setting mode. (The parameter number read previously appears.) Selecting the parameter number Turn ② until "P_r [[parameter clear" (" <u>A</u>[[all parameter clear") appears. Press (SET) to read present set value. "[]" (initial value) appears. Parameter clear Turn ③ to change it to the set value " [". Press (SET) to set. " " and "P_r [["flicker alternately after parameters are cleared. Press (SET) to show the setting again. Press (SET) to show the next parameter. Press (SET) twice to show the next parameter. Press (SET) twice to show the next parameter. Press (SET) twice to show the next parameter. 	2.	
 3. Press MODE to choose the parameter setting mode. (The parameter number read previously appears.) Selecting the parameter number Turn O until "Prf[parameter clear" ("R[[[all parameter clear") appears. Press SET) to read present set value. "[]" (initial value) appears. Parameter clear Turn O to change it to the set value " ". Press SET) to set. " " and "Prf["flicker alternately after parameters are cleared. By turning O , you can read another parameter. Press SET to show the setting again. Press SET twice to show the next parameter. 	 3. Press wore to choose the parameter setting mode. (The parameter number read previously appears.) Selecting the parameter number Turn until " P_r f { parameter clear" (" R { [[all parameter clear") appears. Press SET) to read present set value. " []" (initial value) appears. Parameter clear Turn to change it to the set value " { ". Press SET) to set. " { " and "P_r f { " flicker alternately after parameters are cleared. . By turning , you can read another parameter. . Press SET) to show the setting again. . Press SET) twice to show the next parameter. . Press SET) twice to show the next parameter. . Press SET) twice to show the next parameter. 	_	
 4. Turn ② until "P_r [[parameter clear" ("R[[[all parameter clear") appears. Press SET to read present set value. "[]" (initial value) appears. Parameter clear Turn ③ to change it to the set value " ". Press SET to set. " " and "P_r [["flicker alternately after parameters are cleared. By turning ③ , you can read another parameter. Press SET to show the setting again. Press SET twice to show the next parameter. I are displayed alternately Why? 	 4. Turn ② until "P_r £ parameter clear" ("R £ £ £ all parameter clear") appears. Press SET to read present set value. "f]" (initial value) appears. Parameter clear Turn ③ to change it to the set value " f ". Press SET to set. " f " and "P_r £ £ " flicker alternately after parameters are cleared. By turning ③ , you can read another parameter. Press SET to show the setting again. Press SET twice to show the next parameter. And Er 4 are displayed alternately Why? The inverter is not in the PU operation mode. 	3.	\frown
present set value. " $\int dterminant definition of the set value appears. Parameter clear Turn \textcircled{O} to change it to the set value "f". Press \underbrace{SET} to set."f" and "P_{r} f f" flicker alternately after parameters are cleared.By turning \textcircled{O}, you can read another parameter.Press \underbrace{SET} to show the setting again.Press \underbrace{SET} to show the next parameter.Press \underbrace{SET} twice to show the next parameter.Press \underbrace{SET} twice to show the next parameter.$	present set value. "[]" (initial value) appears. Parameter clear Turn ② to change it to the set value " / ". Press SET to set. " / " and "P_r [/ " flicker alternately after parameters are cleared. By turning ③ , you can read another parameter. . Press SET to show the setting again. . Press SET twice to show the next parameter. . Press SET twice to show the next parameter. . Press SET twice to show the next parameter. . Press SET twice to show the next parameter. . Press SET twice to show the next parameter. . Press SET twice to show the next parameter.		Selecting the parameter number
Parameter clear Turn Ito change it to the set value " / ". Press " / " and "Pr-fl" "flicker alternately after parameters are cleared. By turning Ito show the parameter. Press SET to show the setting again. Press SET twice to show the next parameter. and The set of the set of the set of the set of the setting again. The set of the	Parameter clear Turn Image: to the set value " / ". Press " / " and " $P_r = \int_{-\infty}^{\infty} L$ " flicker alternately after parameters are cleared. By turning Image: wide clear c	4.	Turn 🔘 until "Prfl parameter clear" ("RLLC all parameter clear") appears. Press (SET) to read th
Turn \bigcirc to change it to the set value " i ". Press \bigcirc ET to set. " i " and " \mathcal{P}_{r} \underline{f} " flicker alternately after parameters are cleared. •By turning \bigcirc , you can read another parameter. •Press \bigcirc ET to show the setting again. •Press \bigcirc ET twice to show the next parameter. are displayed alternately Why?	Turn \bigcirc to change it to the set value " i ". Press \bigcirc ET to set. " i " and " \mathcal{P}_{r} , f_{i} " flicker alternately after parameters are cleared. •By turning \bigcirc , you can read another parameter. •Press \bigcirc ET to show the setting again. •Press \bigcirc ET twice to show the next parameter. and \bigcirc are displayed alternately Why? \bigcirc The inverter is not in the PU operation mode.		present set value. "[]" (initial value) appears.
 * I and "Pr. [I "flicker alternately after parameters are cleared. By turning O, you can read another parameter. Press SET to show the setting again. Press SET twice to show the next parameter. I and Er 4 are displayed alternately Why?	 * / " and "P_r <u>f</u> / " flicker alternately after parameters are cleared. By turning , you can read another parameter. Press SET to show the setting again. Press SET twice to show the next parameter. I and Er I are displayed alternately Why? The inverter is not in the PU operation mode.		Parameter clear
 By turning , you can read another parameter. Press SET to show the setting again. Press SET twice to show the next parameter. 1 and Er 4 are displayed alternately Why?	 By turning , you can read another parameter. Press SET to show the setting again. Press SET twice to show the next parameter. and Er 4 are displayed alternately Why? The inverter is not in the PU operation mode. 		Turn 🔘 to change it to the set value " / ". Press (SET) to set.
• By turning • you can read another parameter. • Press SET) to show the setting again. • Press SET) twice to show the next parameter. I and ٤ - ٤ are displayed alternately Why?	• By turning • you can read another parameter. • Press SET • Press SET<		" / " and "Pr.[/ " flicker alternately after parameters are cleared.
Press (SET) twice to show the next parameter.	Press SET twice to show the next parameter.	5.	·By turning 🔘 , you can read another parameter.
Press SET twice to show the next parameter.	Press SET twice to show the next parameter.		•Press (SET) to show the setting again.
and Ery are displayed alternately Why?	ן and בדיק are displayed alternately Why? P The inverter is not in the PU operation mode.		
	The inverter is not in the PU operation mode.		•Press (SET) twice to show the next parameter.
	The inverter is not in the PU operation mode.		L and E - H are displayed alternately Why?
ge The inverter is not in the PU operation mode.			
1. Press $\left(\frac{PU}{EXT}\right)$.			
 EXT : FICSS (EXT) : EXT : Solution is list and the monitor (4 digit LED) displays "0" (<i>Pr. 79</i> = "0" (initial value)). Carry out operation from step 5 again. 		op t	he inverter first. A writing error occurs if parameter clear is attempted while the inverter is running.

3.1.8 Parameter clear, all parameter clear

3.1.9 Parameter copy and parameter verification

PCPY Setting Description				
0 Cancel				
1	Copy the source parameters to the operation panel.			
2	Write the parameters copied to the operation panel into the destination inverter.			
3	Verify parameters in the inverter and operation panel. (Refer to page 57.)			

REMARKS

When the copy destination inverter is not the FR-A700 series or parameter copy write is performed after parameter copy read is stopped, "model error ($r \xi 4$)" is displayed.

• Refer to the parameter list on *page 101* and later for availability of parameter copy.

- When the power is turned OFF or an operation panel is disconnected, etc. during parameter copy write, perform write again or check the values by parameter verification.
- Initial settings of certain parameters are different for different capacities, so some parameter settings may be automatically changed when parameter copy is performed from a different-capacity inverter. After performing a parameter copy from a different-capacity inverter, check the parameter settings. Especially under IPM motor control, check the *Pr.80 Motor capacity* setting before starting the operation. (Refer to the parameter list *(page 101)* for the parameters with different initial settings for different capacities.)

If parameters are copied from an older inverter to a newer inverter that has additional parameters, out-of-range setting values may be written in some parameters. In that case, those parameters operate as if they were set to initial values.

(1) Parameter copy

Parameter settings can be copied to multiple inverters.

	Operation						
1.	Connect the operation panel to the copy source inverter.						
	Parameter setting mode						
2.	Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)						
	Selecting the parameter number						
3.	Turn O until "РГРЧ" (parameter copy) appears. Press SET to read the currently set value. "[]" (initial value) appears.						
	Copying to the operation panel						
4.	Turn O to change it to the setting value " / ". Press SET to copy the source parameters to the operation panel.						
	(" / " flickers for about 30s.)						
	" / " and " P [P y " flicker alternately after parameters are copied.						
5.	Connect the operation panel to the copy destination inverter.						
6.	After performing steps 2 and 3, turn \bigcirc to change it to " c ".						
	Writing to the inverter						
7.	Press (SET) to write the parameters copied to the operation panel to the destination inverter. (" 2" flickers for about 30s.)						
	" 2 " and " P[P] " flicker alternately after parameters are copied.						
8.	After writing the parameter values to the copy destination inverter, always reset the inverter, e.g. switch power off once, before starting operation.						
?	- ٤ / appearsWhy? 🕼 Parameter read error. Perform operation from step 3 again.						
?	- ٤ appearsWhy? @ Parameter write error. Perform operation from step 6 again.						
?[P and C.C. flicker alternately						
	 Set "0" (initial value) in <i>Pr. 160 User group read selection.</i> Set the following setting (initial value) in <i>Pr. 989 Parameter copy alarm release.</i> 						
	55K or lower 75K or higher						
	Pr. 989 Setting 10 100						
	3 Reset Pr 0 Pr 30 Pr 51 Pr 52 Pr 54 Pr 56 Pr 57 Pr 61 Pr 70 Pr 72 Pr 80 Pr 82 Pr 90 to Pr 94 Pr 158						

3. Reset Pr. 9, Pr. 30, Pr. 51, Pr. 52, Pr. 54, Pr. 56, Pr. 57, Pr. 61, Pr. 70, Pr. 72, Pr. 80, Pr. 82, Pr. 90 to Pr. 94, Pr. 158, Pr. 455, Pr. 458 to Pr. 462, Pr. 557, Pr. 859, Pr. 860, Pr. 893.

(2) Parameter verification

Whether same parameter values are set in other inverters or not can be checked.

	Operation
1.	Move the operation panel to the inverter to be verified.
2.	Screen at power-ON The monitor display appears.
3.	Parameter setting mode
э.	Press (MODE) to choose the parameter setting mode. (The parameter number read previously appears.).
	Selecting the parameter number
4.	Тигп 🔘 until "Р[РЧ" (parameter copy) appears. Press (SET) to read the currently set value. "[]" (initial value)
	appears.
	Parameter verification
	Turn O to change it to the setting value "] " (parameter copy verification mode).
5.	Press (SET) to read the parameter setting of the verified inverter to the operation panel. (" J " flickers for about 30s.)
	•If different parameters exist, different parameter numbers and " $r \in 3$ " flicker.
	•Hold down (SET) to verify.
6.	If there is no difference, "P[PY" and " eta " flicker to complete verification.
2	

? r & 3 flickers ... Why?
P Set frequencies, etc. may be different. Check set frequencies.

3.2.1 Simple mode parameter list

For simple variable-speed operation of the inverter, the initial setting of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be made from the operation panel (FR-DU07). For details of parameters, refer to Chapter 4 of 📃 the Instruction Manual (Applied).

POINT

Only simple mode parameter can be displayed using Pr.160 User group read selection. (All parameters are displayed with the initial setting.) Set Pr. 160 User group read selection as required. (Refer to page 54 for parameter change.)

Pr. 160	Description
9999	Only the simple mode parameters can be displayed.
0 (Initial Value)	Simple mode and extended mode parameters can be displayed.
1	Only the parameters registered in the user group can be displayed.

Parameter Number	Name	Incre ments	Initial Value	Range	Applications	Refer to
0	Torque boost	0.1%	6/4/3/2/ 1%*1	0 to 30%	Set to increase a starting torque or when the motor with a load will not rotate, resulting in an alarm [OL] and a trip [OC1]	60
1	Maximum frequency	0.01Hz	120/ 60Hz*2*3	0 to 120Hz	Set when the maximum output frequency need to be limited.	60
2	Minimum frequency	0.01Hz	0Hz	0 to 120Hz	Set when the minimum output frequency need to be limited.	00
3	Base frequency	0.01Hz	60Hz	0 to 400Hz	Set when the rated motor frequency is 50Hz. Check the motor rating plate.	59
4	Multi-speed setting (high speed)	0.01Hz	60Hz*3	0 to 400Hz		
5	Multi-speed setting (middle speed)	0.01Hz	30Hz	0 to 400Hz	Set when changing the preset speed in the parameter with a terminal.	96
6	Multi-speed setting (low speed)	0.01Hz	10Hz	0 to 400Hz		
7	Acceleration time	0.1s	5/15s*4	0 to 3600s	Acceleration/deceleration time can be set.	61
8	Deceleration time	0.1s	5/15s*4	0 to 3600s		01
9	Electronic thermal O/L relay	0.01/ 0.1A*5	Inverter rated current*3	0 to 500/ 0 to 3600A*5	Protect the motor from overheat by the inverter. Set the rated motor current.	59
79	Operation mode selection	1	0	0, 1, 2, 3, 4, 6, 7	Select the operation command location and frequency command location.	63
125	Terminal 2 frequency setting gain frequency	0.01Hz	60Hz*3	0 to 400Hz	Frequency for the maximum value of the potentiometer (5V initial value) can be changed.	98
126	Terminal 4 frequency setting gain frequency	0.01Hz	60Hz*3	0 to 400Hz	Frequency for the maximum current input (20mA initial value) can be changed.	
160	User group read selection	1	0	0, 1, 9999	Parameter which can be read from the operation panel and parameter unit can be restricted.	_
998	IPM parameter initialization	1	0	0, 3003, 3103, 8009, 8109	By performing IPM parameter initialization, PM sensorless vector control is selected and the parameters, which are required to drive an IPM motor, are changed.	74
999	Automatic parameter setting	1	9999	10, 11, 20, 21, 30, 31, 9999	Parameter settings are changed as a batch. Those include communication parameter settings for a Mitsubishi human machine interface (GOT) connection, rated frequency settings of 50Hz/60Hz, and acceleration/ deceleration time increment settings.	148

The initial value differs according to the inverter capacity. (0.4K, 0.75K/1.5K to 3.7K/5.5K, 7.5K/11K to 55K/75K or higher) The initial value differs according to the inverter capacity. (55K or lower/75K or higher) Performing IPM parameter initialization changes the settings. (*Refer to page 74*) The initial value differs according to the inverter capacity. (7.5K or lower/11K or higher) *1

*2 *3

*4 *5

The increments and setting range differ according to the inverter capacity. (55K or lower/75K or higher)

3.2.2 Overheat protection of the motor by the inverter (Pr. 9)

Set the rated motor current in *Pr. 9 Electronic thermal O/L relay* to protect the motor from overheat. Refer to *page 54* for how to change the parameter setting.

Parameter Number	Name	Initial Value	Setting Ra	nge *2	Description
9	Electronic thermal O/L relay	Inverter rated current *1*3	55K or lower	0 to 500A	Set the rated motor current.
5	Liectionic thermal O/L relay		75K or higher	0 to 3600A	Set the fated motor current.

*1 Refer to page 185 for the rated inverter current value. The initial values of the 0.4K and 0.75K are set to 85% of the rated inverter current.

*2 The minimum setting increments are 0.01A for the 55K or lower and 0.1A for the 75K or higher.

*3 Performing IPM parameter initialization changes the setting. (Refer to page 74)

REMARKS

Set Pr. 9 = "0" for vector-control-dedicated motors (SF-V5RU) because they are already equipped with thermal protectors.

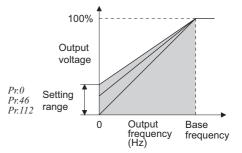
- Caution -

- Protective function by electronic thermal relay function is reset by inverter power reset and reset signal input. Avoid unnecessary reset and power-off.
- When two or more motors are connected to the inverter, they cannot be protected by the electronic thermal relay function. Install an external thermal relay to each motor.
- When the difference between the inverter and motor capacities is large and the setting is small, the protective characteristics of the electronic thermal relay function will be deteriorated. In this case, use an external thermal relay.
- A special motor cannot be protected by the electronic thermal relay function. Use an external thermal relay.
- Electronic thermal relay may not function when 5% or less of inverter rated current is set to electronic thermal relay setting.
- PTC thermistor output built-in the motor can be input to the PTC signal (AU terminal). For details, refer to *Chapter 4 of the Instruction Manual (Applied)*.

3.2.3 When the rated motor frequency is 50Hz (Pr. 3)

First, check the motor rating plate. If a frequency given on the rating plate is "50Hz" only, always set *Pr. 3 Base frequency* to "50Hz". Leaving the base frequency unchanged from "60Hz" may make the voltage low and the torque insufficient. It may result in an inverter trip (E.OC \Box) due to overload. Refer to *page 54* for how to change the parameter setting.

Parameter Number	Name	Initial Value	Setting Range	Description
3	Base frequency	60Hz	0 to 400Hz	Set the frequency when the motor rated torque is generated.


REMARKS

Pr: 3 is invalid under Advanced magnetic flux vector control, Real sensorless vector control, vector control, and PM sensorless vector control and *Pr.84 Rated motor frequency* is valid.

3.2.4 Increasing the starting torque (Pr. 0)

Set this parameter when "the motor with a load will not rotate", "an alarm [OL] is output, resulting in an inverter trip due to [OC1], etc. When the motor with a load will not rotate, increase the *Pr: 0* value 1% by 1% unit by looking at the motor movement. (The guideline is for about 10% change at the greatest.)

Refer to page 54 for how to change the parameter setting.

Parameter Number	Name	Initial Value		Setting Range	Description
		0.4K, 0.75K	6%		
		1.5K to 3.7K	4%		Motor torque in the low-frequency range
0	Torque boost	5.5K, 7.5K	3%	0 to 30%	can be adjusted to the load to increase
		11K to 55K	2%		the starting motor torque.
		75K or higher	1%]	

REMARKS

A too large setting may cause the motor to overheat, resulting in an overcurrent trip (OL (overcurrent alarm) then E.OC1 (overcurrent trip during acceleration)), overload trip (E.THM (motor overload trip), and E.THT (inverter overload trip)). (When a fault occurs, release the start command, and decrease the *Pr*: 0 setting 1% by 1% to reset. (*Refer to page 54*)

POINT

If the inverter still does not operate properly after the above measures, adjust *Pr. 80, Pr. 81* (Advanced magnetic flux vector control), *Pr.800* (Real sensorless vector control). The *Pr.0* setting is invalid under Advanced magnetic flux vector control, Real sensorless vector control, vector control, and PM sensorless vector control. (*Refer to Chapter 4 of the Instruction Manual (Applied).*)

3.2.5 Limiting the maximum and minimum output frequency (Pr. 1, Pr. 2)

Motor speed can be limited. Refer to page 54 for how to Clamped at the change the parameter setting. Output frequency maximum frequency (Hz) Pr.1 Pr.18 Frequency setting Pr.2 5. 10V 0 (4mA) (20mA) Clamped at the minimum frequency

Name	Initial Value		Setting Range	Description	
Maximum frequency	55K or lower	120Hz*	0 to 120Hz	Set the upper limit of the output frequency.	
Maximum nequency	75K or higher	60Hz*	0 10 120112		
Minimum frequency	0Hz		0 to 120Hz	Set the lower limit of the output frequency.	
	Maximum frequency	Maximum frequency 55K or lower 75K or higher 75K or higher	Maximum frequency 55K or lower 120Hz* 75K or higher 60Hz*	NameInitial ValueRangeMaximum frequency55K or lower120Hz*75K or higher60Hz*0 to 120Hz	

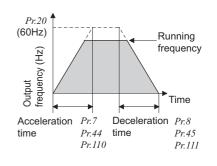
Performing IPM parameter initialization changes the setting. (Refer to page 74)

REMARKS

- The output frequency is clamped by the *Pr*: 2 setting even if the set frequency is lower than the *Pr*: 2 setting (The frequency will not decrease to the *Pr*: 2 setting.)
- Note that Pr. 15 Jog frequency has higher priority than the minimum frequency.

• When the Pr. 1 setting is changed, frequency higher than the Pr. 1 setting can not be set by

- When performing a high speed operation at 120Hz or more, setting of Pr. 18 High speed maximum frequency is necessary.
- (Refer to Chapter 4 of 🛄 the Instruction Manual (Applied).)



▲ If the Pr. 2 setting is higher than the Pr. 13 Starting frequency value, note that the motor will run at the set frequency according to the acceleration time setting by merely switching the start signal on, without entry of the command frequency.

3.2.6 Changing acceleration and deceleration time (Pr. 7, Pr. 8)

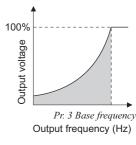
Set in *Pr. 7 Acceleration time* a larger value for a slower speed increase and a smaller value for a faster speed increase.

Set in *Pr. 8 Deceleration time* a larger value for a slower speed decrease and a smaller value for a faster speed decrease. Refer to *page 54* for how to change the parameter setting.

Parameter Number	Name	Initial Value		Setting Range	Description	
7	Acceleration time	7.5K or lower	5s	0 to 3600/360s *	Set the motor acceleration time.	
		11K or higher	15s	0 10 0000/0000		
8	Deceleration time	7.5K or lower	5s	0 to 3600/360s *	Set the motor deceleration time.	
		11K or higher	15	0103000/3008		

* Depends on the *Pr. 21 Acceleration/deceleration time increments* setting. The initial value for the setting range is "0 to 3600s" and setting increments is "0.1s".

3.2.7 Energy saving operation for fans and pumps (Pr. 14, Pr. 60)


Set the following functions to perform energy saving operation for fans and pumps. (1) Load pattern selection (*Pr. 14*)

Select the optimum output characteristic (V/F characteristic) that is suitable for the application and load characteristics.

Parameter Number	Name	Initial Value	Setting Range	Description
14		0	0	For constant torque load
			1	For variable-torque load
	Load pattern selection		2	For constant torque elevators (at reverse rotation boost of 0%)
			3	For constant torque elevators (at forward rotation boost of 0%)
			4	RT signal ON: for constant torque load RT signal OFF: for constant torque elevators at reverse rotation boost of 0%
			5	RT signal ON: for constant torque load RT signal OFF: for constant torque elevators at forward rotation boost of 0%

• Set *Pr.14 Load pattern selection* = "1 (for variable-torque load)."

 When the output frequency is equal to or less than the base frequency, the output voltage changes by its square in proportion to the output frequency. Use this setting to drive a load whose load torque changes in proportion to the square of the speed, such as a fan and a pump.

— CAUTION =

• Load pattern selection is available only under V/F control. Load pattern selection is not available under Advanced magnetic flux vector control, Real sensorless vector control, and PM sensorless vector control.

Before operation

(2) Energy saving control (Pr. 60)

Without complicated parameter settings, the inverter could automatically perform energy saving control. This inverter is optimal for fan and pump applications.

Parameter Number	Name	Initial Value	Setting Range	Description
60	Energy saving control selection *	0	0	Normal operation mode
00			4	Energy saving operation mode

* When parameter is read using the FR-PU04, a parameter name different from an actual parameter is displayed.

• When "4" is set in *Pr. 60*, the inverter operates in the energy saving operation mode.

In the energy saving operation mode, the inverter automatically controls the output voltage to minimize the inverter output voltage during a constant operation.

REMARKS

For applications a large load torque is applied to or machines repeat frequent acceleration/deceleration, an energy saving effect is not expected.

= CAUTION =

- When the energy saving mode is selected, deceleration time may be longer than the setting value. Since overvoltage alarm tends to occur as compared to the constant torque load characteristics, set a longer deceleration time.
- The energy saving operation mode is available only under V/F control. When the Advanced magnetic flux vector control, Real sensorless vector control, vector control, or PM sensorless vector control are selected, the energy saving mode is invalid.
- Since output voltage is controlled in energy saving operation mode, output current may slightly increase.

3.2.8 Selection of the start command and frequency command locations (Pr. 79)

Select the start command location and frequency command location.

Parameter Number	Name	Initial Value	Setting Range	Descri	ption	LED Indication = : Off = : On	
			0	Use External/PU switchover n between the PU and External <i>page 90)</i>) At power on, the inverter is in mode.	PU operation mode PU External operation mode EXT NET operation mode		
			1	Fixed to PU operation mode	ed to PU operation mode ed to External operation mode eration can be performed by switching between the ternal and NET operation mode.		
			2	Operation can be performed			
				External/PU combined operat	tion mode 1		
				Running frequency	Start signal		
79	Operation mode selection	0	3	PU (FR-DU07/FR-PU04/ FR-PU07) setting or external signal input (multi- speed setting, across terminals 4 and 5 (valid when AU signal turns on)).*1	External signal input (terminal STF, STR)	External/PU combined operation mode	
				External/PU combined operated			
				Running frequency	Start signal		
			4	External signal input (Terminal 2, 4, 1, JOG, multi-speed selection, etc.)	Input from the PU (FR- DU07/FR-PU04/FR-PU07) ((FWD), (REV))		
			6	Switchover mode Switch among PU operation NET operation while keeping	the same operation status.	PU operation mode	
	7 External operation mode (PU operation inter X12 signal ON *2 Operation mode can be switched to the I mode. (output stop during External operation) X12 signal OFF *2 Operation mode can not be switched operation mode.		vitched to the PU operation	External operation mode			

*1 The priorities of the frequency commands when *Pr. 79* = "3" are "Multi-speed operation (RL/RM/RH/REX) > PID control (X14) > terminal 4 analog input (AU) > digital input from the operation panel".

*2 For the terminal used for the X12 signal (PU operation interlock signal) input, set "12" in *Pr. 178 to Pr. 189 (input terminal function selection)* to assign functions.

For Pr. 178 to Pr. 189, refer to Chapter 4 of the Instruction Manual (Applied).

When the X12 signal is not assigned, function of the MRS signal switches from MRS (output stop) to PU operation interlock signal.

Acquiring large starting torque and low speed torque (Advanced magnetic flux vector control, Real sensorless vector control) 3.2.9 (Pr. 71, Pr. 80, Pr. 81, Pr. 83, Pr. 84, Pr. 800) (Magnetic flux) (Sensorless)

Advanced magnetic flux vector control can be selected by setting the capacity, poles and type of the motor used in Pr. 80 and *Pr. 81*. Real sensorless vector control can be selected for applications requiring high accuracy and fast response control. Perform offline auto tuning and online auto tuning when using Real sensorless vector control.

What is Advanced magnetic flux vector control? The low speed torque can be improved by providing voltage compensation to flow a motor current which meets the load torque. Output frequency compensation (slip compensation) is made so that the motor actual speed approximates a speed command value. Effective when load fluctuates drastically, etc. Low-speed torque is improved as compared to V/F control. In addition, speed accuracy is improved when load is applied.

What is Real sensorless vector control?

This function enables vector control with a general-purpose motor without encoder. Low speed torque and speed accuracy are improved as compared to Advanced magnetic flux vector control. Always perform offline auto tuning when using Real sensorless vector control.

Real sensorless vector control is suitable for the following applications. To minimize the speed fluctuation even at a severe load fluctuation

- To generate low speed torque
- To prevent machine from damage due to too large torque (torque limit)

To perform torque control

Parameter Number	Name	Initial Value	Setting	Range	Description	
71	Applied motor	0	0 to 8, 13 to 18, 20, 23, 24, 30, 33, 34, 40, 43, 44, 50, 53, 54, 330, 333, 334, 8093, 8094		By selecting a standard motor or constant- torque motor, thermal characteristic and motor constants of each motor are set.	
80	Motor conscitu	0000	55K or lower		Set the applied motor capacity.	
80	Motor capacity	9999	75K of higher 99	0 to 3600kW 99	V/F control	
-			2, 4, 6, 8, 10		Set the number of motor	r poles.
81	Number of motor poles	9999	12, 14, 16, 18, 20		X18 signal-ON:V/F control *1	Set 10 + number of motor poles.
	•		9999		V/F control	
83	Rated motor voltage	200/ 400V∗₂	0 to 1000V		Set the rated motor voltage(V).	
84	Rated motor frequency	60Hz	10 to 300Hz		Set the rated motor freq at 120Hz when <i>Pr</i> : 71 is than IPM)	
			0 te	o 5	Vector control (Refer to page 66)	
	Control method selection	20	9		Vector control test operation	
			10		Speed control	
800			11		Torque control	Real sensorless vector control
			12		MC signal-ON: torque MC signal-OFF: speed	
			20		V/F control (Advanced n control)	nagnetic flux vector

*1 Use Pr. 178 to Pr. 189 to assign the terminals used for the X18 and MC signal. (Refer to Chapter 4 of 🖳 the Instruction Manual (Applied)). *2 The initial value differs according to the voltage level. (200V/400V)

POINT

- If the following conditions are not satisfied, select V/F control since malfunction such as insufficient torque and uneven rotation may occur.
- The motor capacity should be equal to or one rank lower than the inverter capacity. (note that the capacity is 0.4kW or higher)
- Motor to be used is either Mitsubishi standard motor (SF-JR 0.4kW or higher), high efficiency motor (SF-HR 0.4kW or higher) or Mitsubishi constant-torque motor (SF-JRCA 4P, SF-HRCA 0.4kW to 55kW). When using a motor other than the above (SF-TH other manufacturer's motor), perform offline auto tuning without fail. (Advanced magnetic flux vector control) When performing Real sensorless vector control, offline auto tuning are necessary even when Mitsubishi motor is used. Single-motor operation (one motor run by one inverter) should be performed.

The wiring length from inverter to motor should be within 30m. (Perform offline auto tuning in the state where actual wiring work is performed when the wiring length exceeds 30m.)

EXAMPLE CAUTION =

- Uneven rotation slightly increases as compared to the V/F control. (It is not suitable for machines such as grinding machine and wrapping machine which requires less uneven rotation at low speed.)
- Changing the terminal assignment using Pr. 178 to Pr. 189 (input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- When Advanced magnetic flux vector control is performed with a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) connected, output torque may decrease. In addition, do not use a sine wave filter (MT-BSL/BSC)
- Do not perform Real sensorless vector control with a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) or sine wave filer (MT-BSL/BSC) connected

<Selection method of Real sensorless vector control (speed control) >

Speed control is exercised to match the speed command and actual motor speed.

Perform secure wiring. (Refer to page 9.) Set the motor. (Pr. 71) (Refer to page 6.1) Set the motor overheat protection. (Pr. 9) (Refer to page 59.) Set the motor capacity and the number of motor poles. (Pr. 80, Pr. 81) (Refer to page 95.) Set the motor capacity and the number of motor poles. (Pr. 80, Pr. 81) (Refer to page 95.) Set the motor capacity and the number of motor poles. (Pr. 80, Pr. 81) (Refer to page 95.) Set the motor capacity (NW) in Pr. 80 Motor capacity and set the number of motor poles (number of poles) in Pr. 81 Number of motor poles. (VIF control is performed when the setting is "9999" (initial value).) Set the Rated motor voltage and the Rated motor frequency. (Pr. 83, Pr. 84) (Refer to page 64.) (Refer to page 90.) Set the operation command. (Refer to page 80.) (Refer to page 81.) (Refer to page 82.) (Refer to page 83.) <tr< th=""><th>Speed control is exercised to match the speed command and actual motor speed.</th></tr<>	Speed control is exercised to match the speed command and actual motor speed.
Set the motor overheat protection. (<i>Pr. 90</i>) (<i>Refer to page 59</i> .) Set the motor capacity and the number of motor poles. (<i>Pr. 80</i> , <i>Pr. 81</i>) (<i>Refer to page 59</i> .) Set the rated motor current (<i>A</i>) in <i>Pr. 9 Electronic thermal OL relay.</i> Set the motor capacity and the number of motor poles. (<i>Pr. 80</i> , <i>Pr. 81</i>) (<i>Refer to page 95</i> .) Set the motor capacity and the number of motor poles. (<i>Pr. 80</i> , <i>Pr. 81</i>) (<i>Refer to page 95</i> .) Set the motor capacity (RW) in <i>Pr. 80 Motor capacity</i> and set the number of motor poles. (<i>V/F control</i> is performed when the setting is "9999" (initial value).) Set the Rated motor voltage and the Rated motor frequency. (<i>Pr. 83</i> , <i>Pr. 84</i>) (<i>Refer to page 64</i> .) Set the rated motor voltage (<i>V</i>) in <i>Pr. 84 Rated motor frequency</i> . Select a control method. (<i>Pr. 800</i>) (<i>Refer to page 60</i>) Set the operation command. (<i>Refer to page 60</i> .) Set the torque limit. (<i>Pr. 810</i>) (<i>Refer to Chapter to page 80</i> .) Set the torque limit. (<i>Pr. 810</i>) (<i>Refer to Chapter 4 of 12</i> , the Instruction Manual (<i>Applied</i>).) Perform offline auto tuning. (<i>Pr. 95</i>) (<i>Refer to page 80</i> .) Test run Natural input speed control gain adjustment (<i>Refer to page 86</i> .) CAUTION Manual input speed control gain adjustment (<i>Refer to page 86</i> .) Cauron bine auto tuning. (<i>Pr. 95</i>) (<i>Refer to page 86</i> .) CAUTION Manual input speed control gain adjustment (<i>Refer to page 86</i> .) Conversion to self. Set Real sensorles vector control. Seed command the performing feel sensorles vector control. Seed command the torgen set of control many start the motor running at low speed (running 14. Not. 14. N	Perform secure wiring. (Refer to page 9.)
Set the motor overheat protection. (<i>Pr. 9</i>) (<i>Refer to page 59.</i>) Set the rated motor current (A) in <i>Pr. 9 Electronic thermal O1. relay.</i> Set the motor capacity and the number of motor poles. (<i>Pr. 80, Pr. 81</i>) (<i>Refer to page 95.</i>) Image: the motor capacity and the number of motor poles. (<i>Pr. 80, Pr. 81</i>) (<i>Refer to page 95.</i>) Image: the motor capacity and set the number of motor poles. (<i>V.F. Control</i> is performed when the setting is "9999" (initial value).) Set the Rated motor voltage and the Rated motor frequency. (<i>Pr. 83, Pr. 84</i>) (<i>Refer to page 64.</i>) Image: the operation command. (<i>Refer to page 64</i>) Image: the operation command. (<i>Refer to page 60</i>) Image: the torque limit. (<i>Pr. 810</i>) (<i>Refer to page 64</i>) Image: the torque limit. (<i>Pr. 810</i>) (<i>Refer to page 82</i>) Image: the torque limit. (<i>Pr. 810</i>) (<i>Refer to page 83</i>) Image: the torque limit. (<i>Pr. 810</i>) (<i>Refer to page 83</i>) Image: the operation command and speed control. Image: the operation command (<i>Refer to page 83</i>) Image: the operation offline auto tuning. (<i>Pr. 95</i>) (<i>Refer to page 83</i>) Image: the operation offline auto tuning before performing Real sensorless vector control. Image: the operation offline auto tuning before performing Real sensorless vector control. Image: the operform offline auto tuning before performing Real sensorless vect	Set "3" (standard motor) or "13" (constant-torque motor) in Pr. 71
Set the rated motor current (A) in <i>Pr. 9 Electronic thermal OL relay.</i> Set the motor capacity and the number of motor poles. (<i>Pr. 80, Pr. 81</i>) (<i>Refer to page 95.</i>) Set the motor capacity (<i>KW</i>) in <i>Pr. 80 Motor capacity</i> and set the number of motor poles (number of poles) in <i>Pr. 81 Number of motor poles.</i> (<i>VIF control is performed when the setting is "9999"</i> (initial value).) Set the Rated motor voltage and the Rated motor frequency. (<i>Pr. 83, Pr. 84</i>) (<i>Refer to page 64.</i>) Set the rated motor voltage (V) in <i>Pr. 83 Rated motor voltage,</i> and set the rated motor frequency. Set the rated motor voltage (V) in <i>Pr. 83 Rated motor voltage,</i> and set the rated motor frequency. Set the operation command. (<i>Refer to page 64.</i>) Set the operation command. (<i>Refer to page 64.</i>) Set the operation command. (<i>Refer to page 90.</i>) Set the torque limit. (<i>Pr. 810)</i> (<i>Refer to Chapter 4 of Pin the Instruction Manual (Applied).</i>) Perform offline auto tuning. (<i>Pr. 95)</i> (<i>Refer to page 80.</i>) Test run As required Select online auto tuning. (<i>Pr. 95)</i> (<i>Refer to page 83.</i>) Easy gain tuning (<i>Refer to page 84.</i>) Manual input speed control gain adjustment (<i>Refer to page 86.</i>) Manual input speed control gain adjustment (<i>Refer to page 86.</i>) Manual input speed control gain adjustment (<i>Refer to page 86.</i>) Manual input speed control gain adjustment (<i>Refer to page 86.</i>) Nanual input speed control gain adjustment (<i>Refer to page 86.</i>) Nanual input speed control gain adjustment (<i>Refer to page 86.</i>) Outrol control control. Torgue control cannot be perform offline auto tuning before performing Real sensorless vector control. Torgue control cannot be performed in the low speed (approx. 10Hz or less.) (crose vector control. Torgue control cannot be performed in the low speed (approx. 10Hz or less.) Choose wector control. Torgue control cannot	• • • • • • • • • • • • • • • • • • • •
Set the motor capacity and the number of motor poles. (<i>Pr. 80, Pr. 81</i>) (<i>Refer to page 95.</i>) Set the motor capacity (kW) in <i>Pr. 80 Motor capacity</i> and set the number of motor poles (number of poles) in <i>Pr. 81 Number of motor</i> poles. (<i>VIF</i> control is performed when the setting is "9999" (initial value).) Set the Rated motor voltage and the Rated motor frequency. (<i>Pr. 83, Pr. 84</i>) (<i>Refer to page 64.</i>) (<i>Refer to page 64.</i>) Set the rated motor voltage (V) in <i>Pr. 83 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and set the rated motor frequency (Hz) in <i>Pr. 84 Rated motor</i> voltage, and make speed control valid. Set the torque limit. (<i>Pr. 810</i>) (<i>Refer to Chapter 4 of</i> the <i>Instruction Manual</i> (<i>Applied</i>).) Mate sure to perform offline auto tuning. (<i>Pr. 95</i>) (<i>Refer to page 80</i>) Mate sure to perform offline auto tuning before performing Real sensorless vector control. Speed command setting range is 0 to 120Hz for Real sensorless vector control. The cartife requencies are selectable from among 24, Ke, 10N, (H4Hz for Real sensorless vector control. The cartife requencies are selectable from among 24, Ke, 10N, KHz for Real sensorless vector control. The car	
(Refer to page 95.) Set the motor capacity (kW) in Pr. 80 Motor capacity and set the number of motor poles. (V/F control is performed when the setting is "9999" (initial value).) Set the Rated motor voltage and the Rated motor frequency. (Pr. 83, Pr. 84) (Refer to page 64.) Set the rated motor voltage (V) in Pr. 83 Rated motor voltage, and set the rated motor frequency (Hz) in Pr. 83 Rated motor voltage, and set the rated motor frequency. Select a control method. (Pr. 800) (Refer to page 64) Set the operation command. (Refer to page 60) Set the operation command. (Refer to page 90) Set the torque limit. (Pr. 810) (Refer to Chapter 4 of Capt the Instruction Manual (Applied).) Perform offline auto tuning. (Pr. 95) (Refer to page 80.) Test run As required Select online auto tuning. (Pr. 95) (Refer to page 83). Easy gain tuning (Refer to mage 84). Maual input speed control gain adjustment (Refer to page 86). Make sure to perform offline auto tuning before performing Real sensoriess vector control. The carrier frequencies are selectable from among 24. (84, 104 refer to runge adjustment (Refer to page 86). Make sure to perform offline auto tuning before performing Real sensoriess vector control. The carrier frequencies are selectable from among 24. (84, 104 refer al sensoriess vector control. The carrier frequencies are selectable from among 24. (84, 104 refer al sensoriess vector cont	•
Indot poles (number of poles) in <i>Pr. 81 Number of motor poles.</i> (V/F control is performed when the setting is "9999" (initial value).) Set the Rated motor voltage and the Rated motor frequency. (<i>Pr. 83, Pr. 84</i>) (<i>Refer to page 64</i> .) Set the rated motor voltage (V) in <i>Pr. 83 Rated motor voltage</i> , and set the rated motor frequency. Set the rated motor voltage (V) in <i>Pr. 84 Rated motor voltage</i> , and set the rated motor frequency. Select a control method. (<i>Pr. 800</i>) (<i>Refer to page 64</i> .) Set "10" (speed control) or "12" (speed-torque switchover) in <i>Pr. 800</i> and make speed control valid. Set the operation command. (<i>Refer to page 90</i> .) Select the start command. (<i>Refer to page 90</i> .) Select the torque limit. (<i>Pr. 810</i>) (<i>Refer to Chapter 4 of method to page 80</i> .) Perform offline auto tuning. (<i>Pr. 95</i>) (<i>Refer to page 80</i> .) Test run Namual input speed control gain adjustment (<i>Refer to page 80</i> .) Select online auto tuning. (<i>Pr. 95</i>) (<i>Refer to page 83</i> .) Easy gain tuning (<i>Refer to page 84</i>) Manual input speed control gain adjustment (<i>Refer to page 86</i> .) CAUTION Make sure to perform offline auto tuning before performing Real sensorless vector control. Speed control and sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. Performing pre-excitation (<i>X</i> Signal and X13 signal) under torque control may set at the motor runing at a low speed even when the start for STR (is not input. The motor may can also at a low speed when the speed limit value = 0 with a start command input. Perform pre-excitation after making sure that there will be no probem in safety if the motor runs. Do not switch between the STF (forward rotation command) faults command fouring performing. For the 0.4	
(Refer to page 64.) Image: Set the rated motor voltage (V) in Pr. 83 Rated motor voltage, and set the rated motor frequency. Select a control method. (Pr. 800) (Refer to page 64) Image: Set "10" (speed control) or "12" (speed-torque switchover) in Pr. 800 and make speed control valid. Set the operation command. (Refer to page 90) Image: Set "10" (speed control) or "12" (speed-torque switchover) in Pr. 800 and make speed control valid. Set the operation command. (Refer to page 90) Image: Set The start command and speed command. Set the torque limit. (Pr. 810) (Refer to Chapter 4 of The Instruction Manual (Applied).) Image: Perform offline auto tuning. (Pr. 96) (Refer to page 80.) Image: Perform offline auto tuning. (Pr. 95) (Refer to page 83) Easy gain tuning (Refer to page 84) Image: Perform offline auto tuning before performing Real sensoriess vector control. Speed control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 10Hz or less) regeneration command at low speed improx. SHz or less). Choose vector control. <t< td=""><td>motor poles (number of poles) in Pr. 81 Number of motor poles.</td></t<>	motor poles (number of poles) in Pr. 81 Number of motor poles.
 motor frequency (Hz) in <i>Pr. 84 Rated motor frequency</i>. Select a control method. (<i>Pr. 800) (Refer to page 64</i>) Set "10" (speed control) or "12" (speed-torque switchover) in <i>Pr. 800</i> and make speed control valid. Set the operation command. (<i>Refer to page 90</i>) Select the start command and speed command. Set the torque limit. (<i>Pr. 810) (Refer to Chapter 4 of Control valid.</i> Set the torque limit. (<i>Pr. 810) (Refer to Chapter 4 of Control valid.</i> Perform offline auto tuning. (<i>Pr. 96) (Refer to page 80.)</i> Perform offline auto tuning. (<i>Pr. 95) (Refer to page 83.)</i> Easy gain tuning (<i>Refer to page 84.)</i> Manual input speed control gain adjustment (<i>Refer to page 86.)</i> CAUTION Make sure to perform offline auto tuning before performing Real sensorless vector control. Speed command setting range is 0 to 120Hz for Real sensorless vector control. Speed control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5Hz or less). Choose vector control. Perform pre-excitation (LX signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command (STF or STR) is not input. The motor may run also at a low speed when the start command (STF or STR) is not input. The motor may run also at a low speed when the start command (STF or STR) is not input. The motor may run also at a low speed when the stery order pre-excitation after making sure that there will be no problem in safety if the motor runs. Do not switch between the STF (forward rotation command) and STR (reverser rotation command) during operation under	
Set "10" (speed control) or "12" (speed-torque switchover) in <i>Pr. 800</i> and make speed control valid. Set the operation command. (<i>Refer to page 90</i>) Select the start command and speed command. Set the torque limit. (<i>Pr. 810</i>) (<i>Refer to Chapter 4 of</i> The <i>Instruction Manual (Applied).</i>) Perform offline auto tuning. (<i>Pr. 96</i>) (<i>Refer to page 80.</i>) Test run Select the start command set of the <i>Instruction Manual (Applied).</i>) Perform offline auto tuning. (<i>Pr. 96</i>) (<i>Refer to page 80.</i>) Test run Select online auto tuning. (<i>Pr. 95</i>) (<i>Refer to page 83</i>). Select online auto tuning. (<i>Pr. 95</i>) (<i>Refer to page 83</i>). Select online auto tuning (<i>Refer to page 84</i>). Manual input speed control gain adjustment (<i>Refer to page 86</i>). CAUTION Make sure to perform offline auto tuning before performing Real sensorless vector control. Speed command setting range is 0 to 120Hz for Real sensorless vector control. Troy or less of rated torque at approx. 5Hz or less). (Toks vector control. Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit valu	
 speed control valid. Set the operation command. (<i>Refer to page 90</i>) Select the start command and speed command. Set the torque limit. (<i>Pr. 810</i>) (<i>Refer to Chapter 4 of Cha</i>	Select a control method. (Pr. 800) (Refer to page 64)
Select the start command and speed command. Set the torque limit. (Pr. 810) (Refer to Chapter 4 of mining the Instruction Manual (Applied).) Perform offline auto tuning. (Pr. 96) (Refer to page 80.) Test run As required Select online auto tuning. (Pr. 95) (Refer to page 83). Easy gain tuning (Refer to page 84) Manual input speed control gain adjustment (Refer to page 86). CAUTION Make sure to perform offline auto tuning before performing Real sensorless vector control. Speed command setting range is 0 to 120Hz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. The carrier freq	
Set the torque limit. (Pr. 810) (Refer to Chapter 4 of manual (Applied).) Perform offline auto tuning. (Pr. 96) (Refer to page 80.) Test run As required • Select online auto tuning. (Pr. 95) (Refer to page 83) • Easy gain tuning (Refer to page 84) • Manual input speed control gain adjustment (Refer to page 86) • Make sure to perform offline auto tuning before performing Real sensorless vector control. • Speed command setting range is 0 to 120Hz for Real sensorless vector control. • To carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. • Tore control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5Hz or less). Choose vector control. • Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Perform pre-excitation action command) and STR (reverse rotation command) during operation under torque control. Overcurrent trip (E.OCL) or opposite rotation command) and STR (reverse rotation command) during operation under torque control. Overcurrent trip (E.OCL) or opposite rotation deceleration fault (E.11) occurs. • For the 0.4K to 3.7K, the speed deviation may become large at 20Hz or less and torque may become insufficient in the low speed range under 1Hz during continuous operation under Real sensorless vector control. In this case, stop the inverter once, then start again to improve.	Set the operation command. (Refer to page 90)
Perform offline auto tuning. (Pr. 96) (Refer to page 80.) Test run Select online auto tuning. (Pr. 95) (Refer to page 83) Easy gain tuning (Refer to page 84) Banual input speed control gain adjustment (Refer to page 86) CAUTION Make sure to perform offline auto tuning before performing Real sensorless vector control. Speed command setting range is 0 to 120Hz for Real sensorless vector control. Speed command setting range is 0 to 120Hz for Real sensorless vector control. Speed command setting range is 0 to 120Hz for Real sensorless vector control. Torque control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5Hz or less). Choose vector control. Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Perform pre-excitation command) and STR (reverse rotation command) during operation under torque control. Overcurrent trip (E.OCC) or opposite rotation deceleration fault (E.11) occurs. For the 0.4K to 3.7K, the speed deviation may become large at 20Hz or less and torque may become insufficient in the low speed range under 1Hz during continuous operation under Real sensorless vector control. In this case, stop the inverter once, then start again to improve.	Select the start command and speed command.
As required • Select online auto tuning. (Pr. 95) (Refer to page 83) • Easy gain tuning (Refer to page 84) • Manual input speed control gain adjustment (Refer to page 86) • Make sure to perform offline auto tuning before performing Real sensorless vector control. • Speed command setting range is 0 to 120Hz for Real sensorless vector control. • The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. • The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. • The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. • The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. • The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. • Torque control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5Hz or less). Choose vector control. • Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Perform pre-excitation after making sure that there will be no problem in safety if the motor runs. • Do not switch between the STF (forward rotation command) and STR (reverse rotation command) during operatio	
As required • Select online auto tuning. (Pr. 95) (Refer to page 83) • Easy gain tuning (Refer to page 84) • Manual input speed control gain adjustment (Refer to page 86) • Make sure to perform offline auto tuning before performing Real sensorless vector control. • Speed command setting range is 0 to 120Hz for Real sensorless vector control. • The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. • The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. • Torque control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5Hz or less). Choose vector control. • Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Perform pre-excitation after making sure that there will be no problem in safety if the motor runs. • Do not switch between the STF (forward rotation command) and STR (reverse rotation command) during operation under torque control. Overcurrent trip (E.OC[]) or opposite rotation deceleration fault (E.11) occurs. • For the 0.4K to 3.7K, the speed deviation may become large at 20Hz or less and torque may become insufficient in the low speed range under 1Hz during continuous operation under Real sensorless vector control. In this case, stop the inverter once, then start again to improve.	
 Select online auto tuning. (Pr. 95) (Refer to page 83) Easy gain tuning (Refer to page 84) Manual input speed control gain adjustment (Refer to page 86) CAUTION • Make sure to perform offline auto tuning before performing Real sensorless vector control. • Speed command setting range is 0 to 120Hz for Real sensorless vector control. • The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. • Torque control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5Hz or less). Choose vector control. • Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Perform pre-excitation after making sure that there will be no problem in safety if the motor runs. • Do not switch between the STF (forward rotation command) and STR (reverse rotation command) during operation under torque control. Overcurrent trip (E.OC□) or opposite rotation deceleration fault (E.11) occurs. • For the 0.4K to 3.7K, the speed deviation may become large at 20Hz or less and torque may become insufficient in the low speed range under 1Hz during continuous operation under Real sensorless vector control. In this case, stop the inverter once, then start again to improve.	lest run
 Select online auto tuning. (Pr. 95) (Refer to page 83) Easy gain tuning (Refer to page 84) Manual input speed control gain adjustment (Refer to page 86) CAUTION • Make sure to perform offline auto tuning before performing Real sensorless vector control. • Speed command setting range is 0 to 120Hz for Real sensorless vector control. • The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. • Torque control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5Hz or less). Choose vector control. • Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Perform pre-excitation after making sure that there will be no problem in safety if the motor runs. • Do not switch between the STF (forward rotation command) and STR (reverse rotation command) during operation under torque control. Overcurrent trip (E.OC□) or opposite rotation deceleration fault (E.11) occurs. • For the 0.4K to 3.7K, the speed deviation may become large at 20Hz or less and torque may become insufficient in the low speed range under 1Hz during continuous operation under Real sensorless vector control. In this case, stop the inverter once, then start again to improve.	As required
 Make sure to perform offline auto tuning before performing Real sensorless vector control. Speed command setting range is 0 to 120Hz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. Torque control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5Hz or less). Choose vector control. Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Perform pre-excitation after making sure that there will be no problem in safety if the motor runs. Do not switch between the STF (forward rotation command) and STR (reverse rotation command) during operation under torque control. Overcurrent trip (E.OC□) or opposite rotation deceleration fault (E.11) occurs. For the 0.4K to 3.7K, the speed deviation may become large at 20Hz or less and torque may become insufficient in the low speed range under 1Hz during continuous operation under Real sensorless vector control. In this case, stop the inverter once, then start again to improve. 	 Select online auto tuning. (Pr. 95) (Refer to page 83) Easy gain tuning (Refer to page 84)
 Speed command setting range is 0 to 120Hz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. Torque control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5Hz or less). Choose vector control. Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Perform pre-excitation after making sure that there will be no problem in safety if the motor runs. Do not switch between the STF (forward rotation command) and STR (reverse rotation command) during operation under torque control. Overcurrent trip (E.OC□) or opposite rotation deceleration fault (E.11) occurs. For the 0.4K to 3.7K, the speed deviation may become large at 20Hz or less and torque may become insufficient in the low speed range under 1Hz during continuous operation under Real sensorless vector control. In this case, stop the inverter once, then start again to improve. 	CAUTION
When the inverter is likely to start during motor coasting under Real sensorless vector control, set to make frequency search of	 Speed command setting range is 0 to 120Hz for Real sensorless vector control. The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for Real sensorless vector control. Torque control cannot be performed in the low speed (approx. 10Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5Hz or less). Choose vector control. Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Perform pre-excitation after making sure that there will be no problem in safety if the motor runs. Do not switch between the STF (forward rotation command) and STR (reverse rotation command) during operation under torque control. Overcurrent trip (E.OC□) or opposite rotation deceleration fault (E.11) occurs. For the 0.4K to 3.7K, the speed deviation may become large at 20Hz or less and torque may become insufficient in the low speed range under 1Hz during continuous operation under Real sensorless vector control. In this case, stop the inverter once, then start again to improve.

Enough torque may not be generated in the ultra-low speed range less than approx. 2Hz when performing Real sensorless

 Enough torque may vector control.

 The guideline of speed control range is as shown below.

 1:200 (2, 4, 6 poles)

 Can be used at 0.3Hz or more at rated 60Hz

 Can be used at 2Hz or more at rated 60Hz

- Driving: 1:200 (2, 4, 6 poles) 1:30 (8, 10 poles) Regeneration:1:12 (2 to 10 poles) Can be used at 5Hz or more at rated 60Hz

3.2.10 Higher accuracy operation using a motor with encoder (Vector control) (Pr.71, Pr.80, Pr.81, Pr.83, Pr.84, Pr.359, Pr.369, Pr.800) vector

Full-scale vector control can be performed fitting the FR-A7AP/FR-A7AL and using a motor with encoder. Fast response/high accuracy speed control (zero speed control, servo lock), torque control, and position control can be performed.

• What is vector control?

Excellent control characteristics when compared to V/F control and other control techniques, achieving the control characteristics equal to those of DC machines.

- It is suitable for applications below.
- \cdot To minimize the speed fluctuation even at a severe load fluctuation
- · To generate low speed torque
- · To prevent machine from damage due to too large torque (torque limit)
- · To perform torque control or position control
- · Servo-lock torque control which generates a torque at zero speed (i.e. status of motor shaft = stopped)

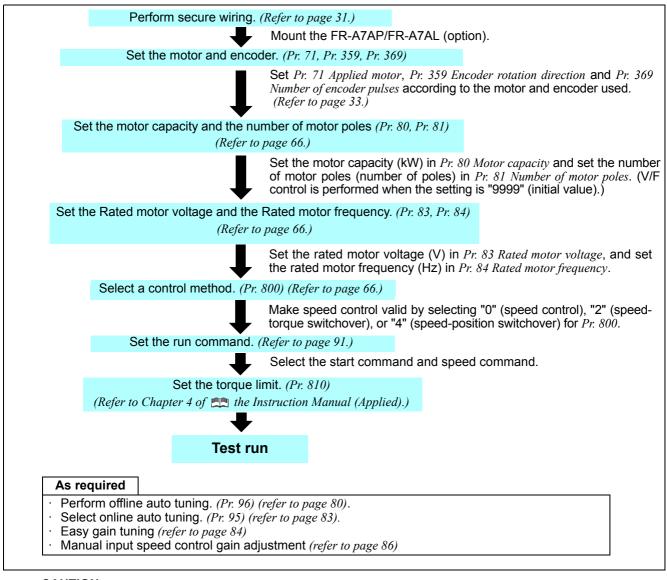
Parameter Number	Name	Initial Value	Setting Range	Descriptio	'n	
71	Applied motor	0	0 to 8, 13 to 18, 20, 23, 24, 30, 33, 34, 40, 43, 44, 50, 53, 54, 330, 333, 334, 8093, 8094	By selecting a standard motor of motor, thermal characteristic an each motor are set.		
80	Motor capacity	9999	55K or lower 0.4 to 55kW 75K or higher 0 to 3600kW	Set the applied motor capacity.		
			9999	V/F control		
			2, 4, 6, 8, 10	Set the number of motor poles.		
81	Number of motor poles	9999	12, 14, 16, 18, 20	X18 signal-ON:V/F control *1	Set 10 + number of motor poles.	
			9999	V/F control		
83	Rated motor voltage	200/ 400V*2	0 to 1000V	Set the rated motor voltage(V).		
84	Rated motor frequency	60Hz	10 to 300Hz	Set the rated motor frequency 120Hz when <i>Pr</i> : 71 is set to a m		
359	359 Encoder rotation direction	1	0	Encoder Clockwise direction as viewed from A is forward rotation	Set the rotation direction according to the motor	
			1	Encoder Counter clockwise direction as viewed from A is forward rotation	specification.	
369	Number of encoder pulses	1024	0 to 4096	Set the number of pulses of the encoder. Set the number of pulses before multiplied by four.		
			0	Speed control		
			1	Torque control	_	
			2	MC signal-ON:torque MC signal-OFF:speed *1		
			3	Position control	Vector control	
	800 Control method selection		4	MC signal-ON:position MC signal-OFF:speed +1		
800		20	5	MC signal-ON:torque MC signal-OFF:position *1		
			9	Vector control test operation (Refer to Chapter 4 of 1991) the Instruction Manual (Applied))		
			10 to 12	Real sensorless vector control (<i>Refer to page 65</i>)		
			20	V/F control (Advanced magnet	c flux vector control)	

*1 Use Pr. 178 to Pr. 189 to assign the terminals used for the X18 and MC signal. (Refer to Chapter 4 of 📖 the Instruction Manual (Applied)).

*2 The initial value differs according to the voltage level. (200V/400V)

POINT

If the conditions below are not satisfied, malfunction such as insufficient torque and uneven rotation may occur.

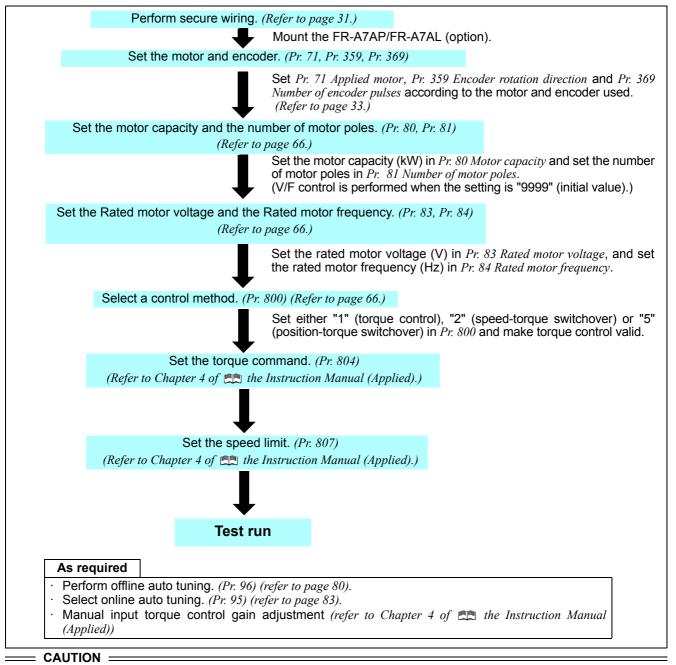

- The motor capacity should be equal to or one rank lower than the inverter capacity. (note that the capacity is 0.4kW or higher)
- Motor to be used is either Mitsubishi standard motor with encoder (SF-JR 0.4kW or higher), high efficiency motor with encoder (SF-HR 0.4kW or higher) or Mitsubishi constant-torque motor with encoder (SF-JRCA 4P, SF-HRCA 0.4kW to 55kW) or vector with encoder control dedicated motor (SF-V5RU (1500r/min series)). When using a motor other than the above (other manufacturer's motor), perform offline auto tuning without fail.
- · Single-motor operation (one motor run by one inverter) should be performed.
- Wiring length from inverter to motor should be within 30m. (Perform offline auto tuning in the state where wiring work is performed when the wiring length exceeds 30m.)

CAUTION

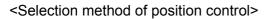
- · Changing the terminal assignment using *Pr. 178 to Pr. 189 (input terminal function selection)* may affect the other functions. Set parameters after confirming the function of each terminal.
- Do not perform vector control with a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) or sine wave filer (MT-BSL/BSC) connected.

<Selection method of speed control>

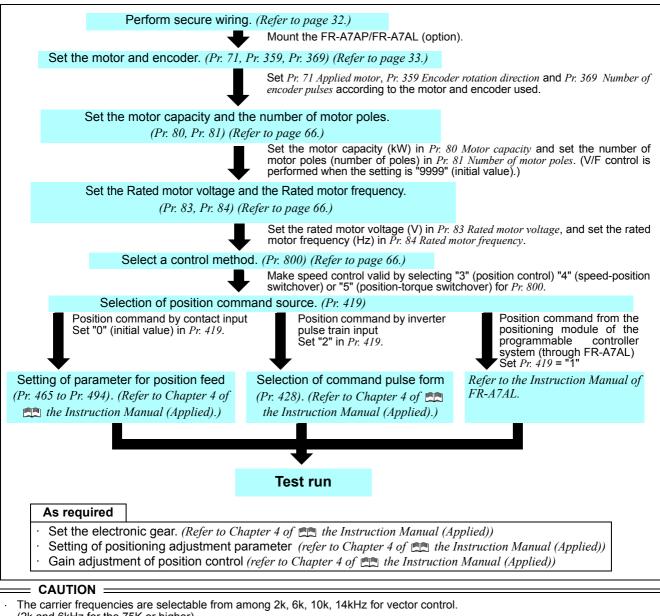
Speed control is exercised to match the speed command and actual motor speed.


CAUTION

- Speed command setting range is 0 to 120Hz for vector control.
- The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for vector control.


(2k and 6kHz for the 75K or higher)

<Selection method of torque control>


- Torque control is exercised to develop torque as set in the torque command.
- The motor speed becomes constant when the motor output torque and load torque are balanced.
- For torque control, therefore, the speed is determined by the load.
- For torque control, the motor gains speed as the motor output torque becomes greater than the motor load. To prevent overspeed, set the speed limit value so that the motor speed does not increase too high. (Speed control is exercised during speed limit and torque control is disabled.)
- When speed limit is not set, the speed limit value setting is regarded as 0Hz to disable torque control.

• The carrier frequencies are selectable from among 2k, 6k, 10k, 14kHz for vector control. (2k and 6kHz for the 75K or higher)

- In the position control, the speed command is calculated so that the difference between command pulse (or parameter setting) and the number of feedback pulses from the encoder is zero in order to run the motor.
- This inverter can perform simple position feed by contact input, position control by inverter simple pulse input, and position control by FR-A7AL pulse train input.

(2k and 6kHz for the 75K or higher)

3.2.11 Performing high-accuracy operation and saving energy at the same time (PM sensorless vector control) (IPM, Pr. 998)

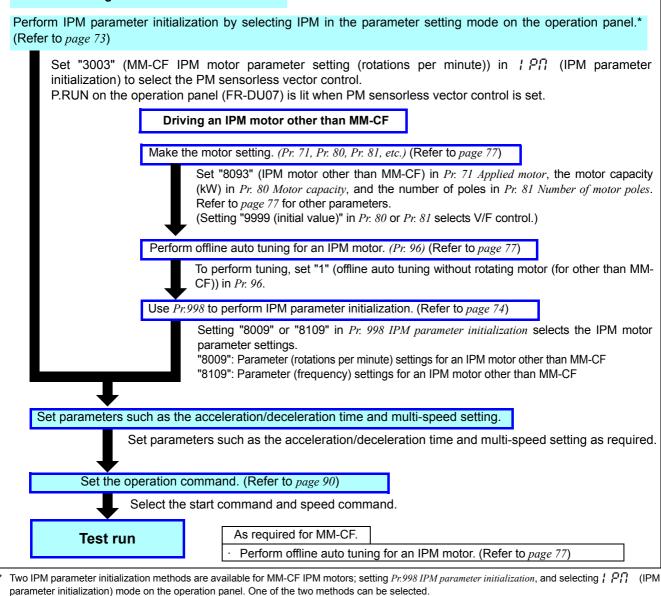
Highly efficient motor control and highly accurate motor speed control can be performed by using the inverter with an IPM (internal permanent magnet) motor, which is more efficient than an induction motor.

The motor speed is calculated based on the output voltage and current from the inverter. It does not require a speed detector such as an encoder. The inverter drives the IPM motor with the least required current when a load is applied in order to achieve the highest motor efficiency.

Performing the IPM parameter initialization makes the IPM motor MM-CF ready for the PM sensorless vector control.

POINT

The following conditions must be met to perform PM sensorless vector control.


- For the motor model, IPM motor must be used.
- The motor capacity must be equal to or one rank lower than the inverter capacity.
- Single-motor operation (one motor run by one inverter) must be performed.
- The overall wiring length with the motor must be 100m or less (refer to *page 16*). (Even with the IPM motor MM-CF, when the wiring length exceeds 30m, perform offline auto tuning.)

Before operation

• This inverter is set for a general-purpose motor in the initial setting. Follow the following procedure to change the setting for the PM sensorless vector control.

Driving an MM-CF IPM motor

To change to the PM sensorless vector control, perform IPM parameter initialization at first. If parameter initialization is performed after setting other parameters, some of those parameters will be initialized too. (Refer to *page 75* for the parameters that are initialized.)

REMARKS

- "Er1" appears if IPM parameter initialization is performed while Pr.72 = "25."
- To use a motor capacity that is one rank lower than the inverter capacity, set *Pr.80 Motor capacity* before performing IPM parameter initialization.
- · To perform PM sensorless vector control on an IPM motor other than MM-CF, contact your sales representative.

CAUTION =

- The speed setting range for an MM-CF IPM motor is between 0 and 200Hz.
- The carrier frequency is limited during PM sensorless vector control. (Refer to page 209)
- Constant-speed operation cannot be performed in the low-speed range of 200r/min or less under current synchronization operation. (*Refer to page 140*)
- During PM sensorless vector control, the RUN signal is output about 100ms after turning ON the start command (STF, STR). The delay is due to the magnetic pole position detection.

During PM sensorless vector control, the automatic restart after instantaneous power failure function operates only when an MM-CF IPM motor is connected.

When a built-in brake or a regeneration unit is used, the frequency search may not be available at 2200r/min or higher. The restart operation cannot be performed until the motor speed drops to a frequency where the frequency search is available.

(1) PM sensorless vector control setting by selecting IPM in the parameter setting mode on the operation panel (; P;;)

POINT The parameters re-	quired	to drive an MM-CF IPM moto	r are auto	matica	Illy changed as a batch. (Refer to page 75)
Operation Initialize the example operation p		neter setting for an MM-CF IPM	motor by	select	ing IPM in the parameter setting mode on the
		Operation ———			— Display ——
		at power-ON or display appears.		ħ	
Pres	SS (MODE)	eter setting mode to choose the parameter setting	MODE	⇒ 8	P. B (The parameter number read previously appears.)
Turr	n O	ng the parameter until	\bigcirc	⇒ ;	<i>PП</i>
Pres	SS (SET)	ing the setting to read the currently set value. value) appears.	SET		8
Turr		ng the setting o change it to the set value	\bigcirc		3003
		eter setting	SET		3003 I PA
Pres	SS (SET)	to set.	Flicke		arameter setting complete!! RUN indicator is lit.
	· Turi	n 🔘 to read another paramete	er.		MON P.RUN
	· Pre	ss (SET) to show the setting again			
	· Pre	ss (SET) twice to show the automa	tic parame	ter setti	ing (AUTO).
Sett	ing		Descrip	tion	
0)	Parameter settings for an induct	ion motor		

REMARKS

3003

• Performing IPM parameter initialization by selecting IPM in the parameter setting mode on the operation panel automatically changes the *Pr. 998 IPM parameter initialization* setting.

Parameter settings for an IPM motor MM-CF (rotations per minute)

- In the initial parameter setting, the capacity same as the inverter capacity is set in *Pr. 80 Motor capacity*. (Refer to *page 189*.) To use a motor capacity that is one rank lower than the inverter capacity, set *Pr. 80 Motor capacity* before performing IPM parameter initialization.
- To set a speed or to display monitored items in frequency, set Pr. 998. (Refer to page 74.)

(2) Initializing the parameters required for the PM sensorless vector control (Pr. 998)

- POINT
- The parameters required to drive an IPM motor are automatically changed as a batch. (Refer to page 75)
- The units of monitored items and parameter settings related to speed can be selected. (Rotations per minute / frequency)

Parameter number	Name	lnitial value	Setting range	Description	
			0	Parameter settings for an induction motor (frequency)	Initial parameter settings required to drive an induction motor are set.
99 8 *1	IPM parameter	0	3003	Parameter settings for an MM-CF IPM motor (rotations per minute)	
3301	998 *1 initialization ⁰	initialization	3103	Parameter settings for an MM-CF IPM motor (frequency)	Initial parameter settings required to
		8009		Parameter (rotations per minute) settings for an IPM motor other than MM-CF (after tuning) *2	drive an IPM motor are set.
			8109	Parameter (frequency) settings for an IPM motor other than MM-CF (after tuning) *2	

*1 This parameter allows its setting to be changed in any operation mode even if "0 (initial value)" is set in *Pr. 77 Parameter write selection*.

*2 To use an IPM motor other than MM-CF, offline auto tuning must be performed for the IPM motor.

- · By performing IPM parameter initialization, initial settings required to drive an IPM motor are set in parameters.
- To use a motor capacity that is one rank lower than the inverter capacity, set *Pr:80 Motor capacity* before performing IPM parameter initialization.
- When Pr. 998 = "3003," the monitor is displayed and the frequency is set using the motor rotations per minute. To use frequency to display or set, set Pr. 998 = "3103."
- Set *Pr. 998* = "0" to change the PM sensorless vector control parameter settings to the parameter settings required to drive an induction motor.
- When using an IPM motor other than MM-CF, set *Pr*: *998* = "8009 or 8109" to select the parameter settings required to perform PM sensorless vector control. The setting can be made after performing offline auto tuning for an IPM motor.

Pr.998 Setting	Description	Operation IPM in the parameter setting mode
0 (initial value)	Parameter settings for an induction motor (frequency)	/ <i>₽</i> ,î (IPM)⇒ Write "0"
3003	Parameter settings for an IPM motor MM-CF (rotations per minute)	/ ₽;; (IPM)⇒ Write "3003"
3103	Parameter settings for an IPM motor MM-CF (frequency)	—
8009	Parameter (rotations per minute) settings for an IPM motor other than MM-CF (after tuning)	—
8109	Parameter (frequency) settings for an IPM motor other than MM-CF (after tuning)	—

REMARKS

- Make sure to set *Pr. 998* before setting other parameters. If the *Pr. 998* setting is changed after setting other parameters, some of those parameters will be initialized too. (Refer to "(3) " for the parameters that are initialized.)
- To change back to the parameter settings required to drive an induction motor, perform parameter clear or all parameter clear.

· If the setting of *Pr. 998 IPM parameter initialization* is changed from "3003, 8009 (rotations per minute)" to "3103, 8109 (frequency)," or from "3103, 8109" to "3003, 8009," all the target parameters are initialized.

The purpose of *Pr. 998* is not to change the display units. Use *Pr. 144 Speed setting switchover* to change the display units between rotations per minute and frequency. *Pr. 144* enables switching of display units between rotations per minute and frequency without initializing the parameter settings.

Example) Changing the *Pr. 144* setting between "6" and "106" switches the display units between frequency and rotations per minute.

• To perform PM sensorless vector control on an IPM motor other than MM-CF, contact your sales representative.

(3) IPM parameter initialization list

The parameter settings in the following table are changed to the settings required to perform PM sensorless vector control by selecting PM sensorless vector control with the IPM parameter initialization mode on the operation panel or with *Pr. 998 IPM parameter initialization* setting. The changed settings differ according to the IPM motor specification (capacity).

Performing parameter clear or all parameter clear sets back the parameter settings to the settings required to drive an induction motor.

					Setting			Set	ting
			Induction	IPM r	notor	IPM r	notor		-
Parameter	Name		motor (rotations per minute)		(frequency)		increments		
rarameter	Name	Pr.998	0 (Initial setting)	3003 (MM-CF)	8009 (other than MM-CF)	3103 (MM-CF)	8109 (other than MM-CF)	3003, 8009	0, 3103, 8109
1	Maximum frequency	,	120/60Hz	3000r/min		200Hz		1r/min	0.01Hz
1			*1	30001/11111		20082		11/11111	
4	Multi-speed setting (speed)	Ingn	60Hz	2000r/min	Pr. 84	133.33Hz	Pr. 84	1r/min	0.01Hz
9	Electronic thermal C)/L relay	Rated inverter current	Rated motor current (Refer to page 189)	—	Rated motor current (Refer to page 189)	_	0.01A/	0.1A *1
13	Starting frequency		0.5Hz	8r/min *5	<i>Pr: 84</i> × 10%	0.5Hz 6	<i>Pr:</i> 84 × 10%	1r/min	
15	Jog frequency		5Hz	200r/min	<i>Pr: 84</i> × 10%	13.33Hz	<i>Pr: 84</i> × 10%	1r/min	0.01Hz
18	High speed maximu frequency		120/60Hz *1	3000r/min	—	200Hz	—	1r/min	0.01Hz
20	Acceleration/deceler reference frequency	,	60Hz	2000r/min	Pr. 84	133.33Hz	Pr. 84		0.01Hz
22	Stall prevention oper	ration level	150%			0%		0.	1%
37	Speed display		0		()			1
55	Frequency monitorir reference	ng	60Hz	2000r/min	Pr. 84	133.33Hz	Pr. 84	1r/min	0.01Hz
56	Current monitoring r	reference	Rated inverter current	Rated motor current (Refer to page 189)	Pr. 859	Rated motor current (Refer to <i>page 189</i>)	Pr. 859	0.01A/	0.1A *1
71	Applied motor		0	330 *2	_	330 *2	_		1
	Motor capacity		9999	Motor capacity (MM-CF) *3	—	Motor capacity (MM-CF) *3	_	*	V/0.1kW '1
81	Number of motor po		9999	8	_	8	_		1
84	Rated motor frequer		60Hz	2000r/min	_	133.33Hz	_	1r/min	0.01Hz
125 (903)	Terminal 2 frequency		60Hz	2000r/min	Pr. 84	133.33Hz	Pr. 84	1r/min	0.01Hz
126 (905)	Terminal 4 frequency		60Hz	2000r/min	Pr. 84	133.33Hz	Pr. 84	1r/min	0.01Hz
144	Speed setting switch		4	108	Pr: 81 +100	8	Pr. 81		1
240	Soft-PWM operation		1			•			1
263	Subtraction starting		60Hz	2000r/min	Pr. 84	133.33Hz	Pr. 84	1r/min	0.01Hz
266	Power failure decele switchover frequenc		60Hz	2000r/min	<i>Pr.</i> 84	133.33Hz	<i>Pr.</i> 84	1r/min	0.01Hz
374	Overspeed detection		140Hz	3150r/min	Pr. 1 (Pr. 18) × 105%	210Hz	<i>Pr. 1 (Pr. 18)</i> × 105%	1r/min	0.01Hz
386	Frequency for maxir pulse		60Hz	2000r/min	Pr. 84	133.33Hz	Pr. 84		-
390 *4	% setting reference	1 2	60Hz	133.33Hz	Pr. 84	133.33Hz	Pr: 84		1Hz
505	Speed setting refere	ence	60Hz	133.33Hz	Pr. 84	133.33Hz	Pr: 84	0.0	1Hz
557	Current average val signal output referer		Rated inverter current	Rated motor current (Refer to page 189)	Pr. 859	Rated motor current (Refer to page 189)	Pr. 859	0.01A/	0.1A *1
820	Speed control P gair	n 1	60%		30	%		1	%
821	Speed control integr		0.333s			33s			01s
824	Torque control P gain loop proportional ga	in)	100%		10	0%		1	%
825	Torque control integra (current loop integra	ral time 1 Il time)	5ms		20	ms			lms
870	Speed detection hys		0Hz	8r/	min	0.5	5Hz	1r/min	0.01Hz
885	Regeneration avoida compensation frequivalue		6Hz	200r/min	<i>Pr: 84</i> × 10%	13.33Hz	<i>Pr: 84</i> × 10%	1r/min	0.01Hz
893	Energy saving monit reference (motor cap	pacity)	Rated inverter capacity		Motor capa	city (Pr. 80)			V/0.1kW 1
C14 (918)	Terminal 1 gain freq (speed)	uency	60Hz	2000r/min	Pr. 84	133.33Hz	Pr. 84	1r/min	0.01Hz

*1

Initial values differ according to the inverter capacity. (55K or lower/75K or higher) Setting *Pr. 71 Applied motor* = one of "333, 334, 8093, 8094" does not change the *Pr. 71 Applied motor* setting. Setting *Pr. 80 Motor capacity* ≠ "9999" does not change the *Pr. 80 Motor capacity* setting. *2

*3

*4 This parameter can be set when FR-A7NL is mounted.

*5 *6 200r/min when Pr. 788 Low-speed range torque characteristics selection = "0".

13.33Hz when Pr. 788 Low-speed range torque characteristics selection = "0".

REMARKS

If IPM parameter initialization is performed in rotations per minute (Pr. 998 = "3003" or "8009"), the frequency-related parameters not listed in the table above and the monitored items are also set and displayed in rotations per minute.

(4) PM sensorless vector control display and PM sensorless vector control signal

P.RUN on the operation panel (FR-DU07) is lit and the PM sensorless vector control signal (IPM) is output during PM sensorless vector control.

For the terminal to output the PM sensorless vector control signal, assign the function by setting "57 (positive logic)" or "157 (negative logic)" in any of *Pr:190 to Pr:196 (Output terminal function selection)*.

3.2.12 Exhibiting the best performance of the motor performance (offline auto tuning) (Pr.1, Pr.9, Pr.18, Pr.71, Pr.80, Pr.81, Pr.83, Pr.84, Pr.96, Pr.707, Pr.724, Pr.725) Magnetic flux Sensorless Vector PM

The motor performance can be maximized with offline auto tuning.

• What is offline auto tuning?

When performing Advanced magnetic flux vector control, Real sensorless vector control or vector control, the motor can be run with the optimum operating characteristics by automatically measuring the motor constants (offline auto tuning) even when each motor constants differs, other manufacturer's motor is used, or the wiring length is long.

Parameter Number	Name	Initial Value	Setting Range Description		ription		
1	Maximum frequency	120/ 60Hz*1	0 to 120Hz		Set the upper limit of the output frequency.		
9	Electronic thermal O/L relay	Rated inverter current	0 to 5	500A	Set the rated motor c	eurrent.	
18	High speed maximum frequency	120/ 60Hz*1	120 to -		Set when performing 120Hz or more. (Limi PM sensorless vecto	ited at 300Hz under	
71	Applied motor	0	0 to 8, 13 to 18, 33, 34, 40, 43, 330, 333, 334	44, 50, 53, 54,	Setting a motor type characteristic and the		
80	Motor capacity	9999	55K or lower 75K or higher	0.4 to 55kW 0 to 3600kW	Set the applied motor	r capacity.	
					V/F control		
			2, 4, 6, 8, 10		Set the number of motor poles.		
81	Number of motor poles	9999	12, 14, 10	6, 18, 20	X18 signal-ON:V/F control	Set 10 + number of motor poles.	
			9999		V/F control		
83	Rated motor voltage	200/ 400V*2	0 to 1000V		Set the rated motor voltage (V).		
84	Rated motor frequency	60Hz	10 to 3	300Hz	Set the rated motor fr (Limited at 120Hz wh motor other than IPM	en Pr. 71 is set to a	
			0		Offline auto tuning is		
			1		Offline auto tuning is motor running (other	than MM-CF)	
96	Auto tuning setting/ status	0	11		Offline auto tuning is performed without motor running (MM-CF)		
			101		Offline auto tuning by purpose motor (no tu sensorless vector co	ning during PM	
707	Motor inertia (integer)	9999	10 to 999		Set the motor inertia.		
101		0000	9999		Uses the inertia of the		
724	24 Motor inertia		1 to		Set the motor inertia.		
	(exponent)	9999	999	9999		e MM-CF IPM motor	
725	Motor protection current level	9999	0 to 5		Set the maximum cur the motor (%).	, , ,	
			999	99	Uses the maximum current of MM-CF		

*1 Initial values differ according to the inverter capacity. (55K or lower/75K or higher)

*2 The initial value differs according to the voltage level. (200V/400V)

POINT

- This function is valid only Advanced magnetic flux vector control, Real sensorless vector control, vector control or PM sensorless vector control is selected.
- Reading/writing of motor constants tuned by offline auto tuning are enabled. You can copy the offline auto tuning data (motor constants) to another inverter with the PU (FR-DU07/FR-PU07).
- Even when motors (other manufacturer's motor, SF-JRC, SF-TH, etc.) other than Mitsubishi standard motor (SF-JR 0.4kW or higher), high efficiency motor (SF-HR 0.4kW or higher), Mitsubishi constant-torque motor (SF-JRCA 4P, SF-HRCA 0.4kW to 55kW), vector control dedicated motor (SF-V5RU (1500r/min series)) and IPM motor (MM-CF) are used or the wiring length is long (30mor more as a reference), using the offline auto tuning function runs the motor with the optimum operating characteristics.
- The offline auto tuning enables the operation with an IPM motor other than MM-CF.
- Tuning is enabled even when a load is connected to the motor. (As the load is lighter, tuning accuracy is higher. Tuning accuracy does not change even if the inertia is large.)
- When an induction motor is used, the motor rotation can be locked (*Pr. 96* = "1") or unlocked (*Pr. 96* = "101") during offline auto tuning. The rotation mode (motor unlocked) has a higher tuning accuracy than the non-rotation mode (motor locked).
- The offline auto tuning status can be monitored with the PU (FR-DU07/FR-PU07/FR-PU04).
- Do not connect a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) to the 55K or lower and sine wave filter (MT-BSL/BSC) to the 75K or higher between the inverter and motor.

(1) Before performing offline auto tuning

Check the following before performing offline auto tuning.

- Make sure Advanced magnetic flux vector control (*Pr. 80, Pr. 81*), Real sensorless vector control, vector control (*Pr. 800*) or PM sensorless vector control (MM-CF) is selected.
- · A motor should be connected. Note that the motor should be at a stop at a tuning start.
- The motor capacity should be equal to or one rank lower than the inverter capacity. (Note that the capacity is 0.4kW or higher.)
- · Motors such as high-slip motor, high-speed motor and special motor cannot be tuned.
- The maximum frequency is 120Hz under induction motor control, and 300Hz under PM sensorless vector control.
- Even if tuning is performed without motor running (*Pr. 96 Auto tuning setting/status* = "1"), the motor may run slightly. Therefore, fix the motor securely with a mechanical brake, or before tuning, make sure that there will be no problem in safety if the motor runs. (Caution is required especially in vertical lift applications). Note that if the motor runs slightly, tuning performance is unaffected.
- When driving an induction motor, note the following when selecting offline auto tuning performed with motor running (*Pr. 96 Auto tuning setting/status* = "101").

Torque is not enough during tuning.

The motor may be run at nearly its rated speed.

The mechanical brake is open.

No external force is applied to rotate the motor.

- Offline auto tuning will not be performed properly if it is performed with a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) connected to the 55K or lower and sine wave filter (MT-BSL/BSC) connected to the 75K or higher between the inverter and motor. Remove it before starting tuning.
- When exercising vector control, use the encoder that is coupled directly to the motor shaft without looseness. Speed ratio should be 1:1.
- Tuning is not available during position control.

(2) Setting

Induction motor

- 1) Select the Advanced magnetic flux vector control, Real sensorless vector control or vector control.
- 2) Set "1" or "101" in Pr. 96 Auto tuning setting/status.
 - When the setting is "1" Tuning is performed without motor running.

It takes approximately 25 to 120s * until tuning is completed.

(Excitation noise is produced during tuning.) *Tuning time differs according to the inverter capacity and motor type.

· When the setting is "101" Tuning is performed with motor running.

It takes approximately 40s until tuning is completed.

The motor runs at nearly its rated frequency.

3) Set the rated motor current (initial value is rated inverter current) in *Pr. 9 Electronic thermal O/L relay*.

4) Set the rated voltage of motor (initial value is 200V/400V) in *Pr. 83 Rated motor voltage* and rated frequency of motor (initial value is 60Hz) in *Pr. 84 Rated motor frequency*.

(For a Japanese standard motor, etc. which has both 50Hz and 60Hz rated values, set (200V/60Hz or 400V/60Hz).) For the vector control dedicated motor SF-V5RU (1500r/min series), refer to *page 33*.

For vector control dedicated motor SF-V5RU / SF-V5RU1 / V5RU3 / V5RU4, set as the following table.

	Pr. 83	Pr. 84 Setting	
	200V class	400V class	11. 84 Setting
SF-V5RU1K1 to SF-V5RU30K1	160V	320V	
SF-V5RU37K1	170V	340V	33.33Hz
SF-V5RU1K3 to SF-V5RU22K3	160V	320V	55.55112
SF-V5RU30K3	170V	340V	7
SF-V5RU3K4, SF-V5RU7K4	150V	300V	16.67Hz
SF-V5RU4-other than the above	160V	320V	10.07112

REMARKS

• Perform auto tuning for SF-V5RU (except for 1500 r/min series) with setting 13 or 14 in *Pr. 71* (For perform auto tuning, set *Pr. 83* and *Pr. 84*)

- When *Pr. 11 DC injection brake operation time* = "0" or *Pr.12 DC injection brake operation voltage* = "0," offline auto tuning is performed at the initial value of *Pr. 11* or *Pr. 12*.
- · When the positioning control is selected (Pr. 800 = "3" or "5" (when MC signal is OFF)), offline auto tuning is not performed.

5) Set *Pr. 71 Applied motor* according to the motor used.

Motor		Pr. 71 Setting *
	SF-JR, SF-TH	3
Mitsubishi standard motor	SF-JR 4P-1.5kW or lower	23
Mitsubishi high efficiency motor	SF-HR	43
	Others	3
	SF-JRCA 4P, SF-TH (constant-torque)	13
Mitsubishi constant-torque motor	SF-HRCA	53
	Others (SF-JRC, etc.)	13
Vector control dedicated motor	SF-V5RU (1500r/min series) SF-THY	33
	SF-V5RU (except for 1500r/min series)	13
Other manufacturer's standard motor	-	3
Other manufacturer's constant-torque motor	-	13

* For other settings of Pr. 71, refer to Chapter 4 of 📖 the Instruction Manual (Applied).

To perform tuning, set the following parameters about the motor.

Parameter Number	Name	Setting for an IPM motor other than MM-CF	Setting for MM-CF	
80	Motor capacity	Motor capacity (kW)		
81	Number of motor poles	Number of motor poles		
1(18)	Maximum frequency (High speed maximum frequency)	The maximum motor frequency (Hz)	Set by the IPM parameter initialization (Refer to <i>page 74.</i>)	
9	Electronic thermal O/L relay	Rated motor current (A)	(INCICI IN page 74.)	
84	Rated motor frequency	Rated motor frequency (Hz)		
83	Rated motor voltage	Rated motor voltage (V)	Rated motor voltage (V) printed on the motor's rating plate.	
707	Motor inertia (integer)	Motor inertia		
724	Motor inertia (exponent)	$Jm = Pr.707 \times 10^{(-Pr.724)} (kg \cdot m^2)$	9999 (Initial value)	
725	Motor protection current level	Notor protection current level Maximum current (OCT) level of the motor (%)		
71	Applied motor	8093	333	
96	Auto tuning setting/status	1	11	

REMARKS

To perform offline auto tuning on an IPM motor other than MM-CF, contact your sales representative.

(3) Execution of tuning

- CAUTION

Before performing tuning, check the monitor display of the operation panel (FR-DU07) or parameter unit (FR-PU04/FR-PU07) if the inverter is in the state ready for tuning. (Refer to 2) below) Turning ON the start command while tuning is unavailable starts the motor.

1)When performing PU operation, press (FWD)/(REV) of the operation panel.

For External operation, turn ON the start command (STF signal or STR signal). Tuning starts.

REMARKS

· Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of MRS signal.

• To force tuning to end, use the MRS or RES signal or press (STOP) of the operation panel.

- (Turning the start signal (STF signal or STR signal) OFF also ends tuning.)
- · During offline auto tuning, only the following I/O signals are valid: (initial value)
- · Input signals <valid signal> STOP, OH, MRS, RT, RES, STF, STR
- · Output terminal RUN, OL, IPF, FM, AM, A1B1C1

Note that the progress status of offline auto tuning is output in fifteen steps from AM and FM when speed and output frequency are selected.

- Do not perform ON/OFF switching of the second function selection signal (RT) during execution of offline auto tuning. Auto tuning is not executed properly.
- Setting offline auto tuning (Pr. 96 Auto tuning setting/status = "1, 11, 101") will make pre-excitation invalid.

= CAUTION :

- When selecting offline auto tuning performed with motor running (*Pr. 96 Auto tuning setting/status* = "101"), caution must be taken since the motor runs.
- Since the RUN signal turns ON when tuning is started, caution is required especially when a sequence which releases a mechanical brake by the RUN signal has been designed.

 When executing offline auto tuning, input the run command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.

• While Pr. 79 = "7," turn the X12 signal ON to tune in the PU operation mode.

2)Monitor is displayed on the operation panel (FR-DU07) and parameter unit (FR-PU07/FR-PU04) during tuning as below. Operation Panel (FR-DU07) Display

		Pr. 96 setting	
	1	11	101
(1) Setting			
(2) Tuning in progress			
(3) Normal end	Bickering	Flickering	Flickering
(4) Error end (when the inverter protective function is activated)			

Parameter Unit (FR-PU07/FR-PU04) Display

		Pr. 96 setting	
	1	11	101
(1) Setting	READ:List 1 STOP PU	READ:List 11 STOP PU	READ:List 101 STOP PU
(2) Tuning in progress	IIIII I I TUNE 2 STF FWD PU	TUNE 12 STF FWD PU	TUNE ₁₀₂ STF FWD PU
(3) Normal end	TUNE 3 COMPLETION STF STOP PU	TUNE 13 COMPETION STF STOP PU	TUNE 103 COMPLETION STF STOP PU
(4) Error end (when the inverter protective function is activated)		TUNE 9 ERROR 9 STF STOP PU	

 \cdot Reference: Offline auto tuning time (when the initial setting is set)

Offline Auto Tuning Setting	Time
Non-rotation mode (<i>Pr: 96</i> = "1")	Approximately 25 to 120s (Tuning time differs according to the inverter capacity and motor type.)
Rotation mode (<i>Pr. 96</i> = "101")	Approximately 40s (Offline auto tuning time varies with the acceleration and deceleration time settings as indicated below. Offline auto tuning time = acceleration time + deceleration time + approx. 30s)

3)When offline auto tuning ends, press (TOP) of the operation panel during PU operation. For External operation, turn OFF the start signal (STF signal or STR signal).

This operation resets the offline auto tuning and the PU's monitor display returns to the normal indication.

(Without this operation, next operation cannot be started.)

REMARKS

The motor constants measured once in the offline auto tuning are stored as parameters and their data are held until the offline auto tuning is performed again.

· Changing Pr. 96 setting from "3 or 103" after tuning completion will invalidate the tuning data. In this case, tune again.

4)If offline auto tuning ended in error (see the table below), motor constants are not set. Perform an inverter reset and restart tuning.

Error Display	Error Cause	Remedy
8	Forced end	Set "1, 11, 101" in <i>Pr. 96</i> and perform tuning again.
9	Inverter protective function operation	Make setting again.
91	Current limit (stall prevention) function was activated.	Increase acceleration/deceleration time. Set "1" in <i>Pr. 156</i> .
92	Converter output voltage reached 75% of rated value.	Check for fluctuation of power supply voltage.
93	Calculation error A motor is not connected.	Check the motor wiring and make setting again.

5)When tuning is ended forcibly by pressing or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.)

Perform an inverter reset and restart tuning.

6)When using the motor corresponding to the following specifications and conditions, reset *Pr. 9 Electronic thermal O/L relay* as below after tuning is completed.

- a) When the rated power specifications of the motor is 200/220V (400/440V) 60Hz, set 1.1 times rated motor current value in *Pr:9*.
- b) When performing motor protection from overheat using a PTC thermistor or motor with temperature detector such as Klixon, set "0" (motor overheat protection by the inverter is invalid) in *Pr. 9.*

= CAUTION =

· An instantaneous power failure occurring during tuning will result in a tuning error.

- After power is restored, the inverter goes into the normal operation mode. Therefore, when STF (STR) signal is ON, the motor runs in the forward (reverse) rotation.
- · Any alarm occurring during tuning is handled as in the ordinary mode. Note that if a fault retry has been set, retry is ignored.
- \cdot The set frequency monitor displayed during the offline auto tuning is 0Hz.

 $\underline{\wedge}$ Note that the motor may start running suddenly.

1 If offline auto tuning with motor rotation is performed for a lift, etc. when a general-purpose motor is used, the lift might fall due to insufficient torque.

3.2.13 High accuracy operation unaffected by the motor temperature (online auto tuning) (Pr. 95) Magnetic flux Sensorless Vector

When online auto tuning is selected under Advanced magnetic flux vector control, Real sensorless vector control or vector control, excellent torque accuracy is provided by temperature compensation even if the secondary resistance value of the motor varies with the rise of the motor temperature.

Parameter Number	Name	Initial Value	Setting Range	Description	
		0	0	Online auto tuning is not performed	
95	Online auto tuning selection		1	Start-time online auto tuning	
			2	Magnetic flux observer (normal tuning)	

(1) Start-time online auto tuning (setting is = "1")

- By quickly tuning the motor constants at a start, high accuracy operation unaffected by the motor temperature and stable operation with high torque down to ultra low speed can be performed.
- Make sure Advanced magnetic flux vector control (*Pr. 80, Pr. 81*), Real sensorless vector control or vector control (*Pr. 800*) is selected. (*Refer to page 64*.)
- · Before performing online auto tuning, perform offline auto tuning without fail.

<Operation method>

- 1) Check that "3" or "103" (offline auto tuning completion) is set in Pr. 96 Auto tuning setting/status.
- 2) Set "1" (start-time online auto tuning) in *Pr. 95 Online auto tuning selection*. Online auto tuning is performed from the next starting.

3) When performing PU operation, press (FWD)/(REV) of the operation panel.

For External operation, turn ON the run command (STF signal or STR signal).

= CAUTION =

For using start-time online auto tuning in elevator, examine the utilization of a brake sequence for the brake opening timing at a start. Though the tuning ends in about a maximum of 500ms after a start, torque is not provided fully during that period. Therefore, note that there may be a possibility of drop due to gravity. It is recommended to perform tuning using a start time tuning signal (X28). (*Refer to Chapter 4 of the Instruction Manual (Applied).*)

(2) Magnetic flux observer (normal tuning) (setting value is = "2")

• When exercising vector control using a motor with encoder, it is effective for torque accuracy improvement. The current flowing in the motor and the inverter output voltage are used to estimate/observe the magnetic flux in the motor.

The magnetic flux of the motor is always (including during operation) detected with high accuracy so that an excellent characteristic is provided regardless of the change in the temperature of the secondary resistance. • Vector control (*Pr. 80, Pr. 81, Pr. 800*) should be selected. (*Refer to page 95.*)

= Caution =

 For the SF-V5RU, SF-JR (with encoder), SF-HR (with encoder), SF-JRCA (with encoder) or SF-HRCA (with encoder), it is not necessary to perform offline auto tuning to select adaptive magnetic flux observer. (Note that it is necessary to perform offline auto tuning for the wiring length resistance to be applied on the control when the wiring length is long (30m or longer as reference)).

REMARKS

- Online auto tuning does not operate if the MRS signal is input, if the preset speed is less than the *Pr. 13 Starting frequency* (Advanced magnetic flux vector control), or if the starting conditions of the inverter are not satisfied, e.g. inverter error.
- $\cdot\,\,$ Online auto tuning does not operate during deceleration or at a restart during DC brake operation.
- · Invalid for jog operation.
- Automatic restart after instantaneous power failure overrides when automatic restart after instantaneous power failure is selected.
 (Start-time online auto tuning is not performed at frequency search.)

Perform online auto tuning at a stop with the X28 signal when using automatic restart after instantaneous power failure together. (Refer to *Chapter 4 of* end the *Instruction Manual (Applied)* for details.)

- · Zero current detection and output current detection are valid during online auto tuning.
- \cdot The RUN signal is not output during online auto tuning. The RUN signal turns ON at a start.
- · If the period from an inverter stop to a restart is within 4s, start-time tuning is performed but the tuning results are not applied.

3.2.14 To perform high accuracy/fast response operation (gain adjustment of Real sensorless vector control, vector control and PM sensorless vector control) (Pr. 818 to Pr. 821, Pr. 880) Sensorless Vector

The ratio of the load inertia to the motor inertia (load inertia moment) is estimated in real time from the torque command and speed during motor operation by vector control. As optimum gain of speed control and position control are automatically set from the load inertia ratio and response level, time and effort of making gain adjustment are reduced. (Easy gain tuning)

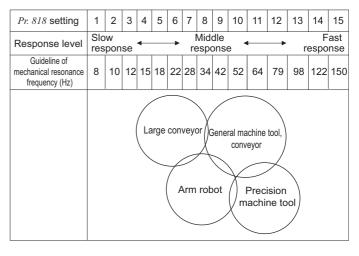
Set the control gain by setting the load inertia ratio manually when the load inertia ratio cannot be estimated due to load fluctuation, or under Real sensorless vector control or PM sensorless vector control.

Make a manual input adjustment when vibration, noise or any other unfavorable phenomenon occurs due to large load inertia or gear backlash, for example, or when you want to exhibit the best performance that matches the machine.

Parameter Number	Name	Initial Value	Setting Range	Description
818	Easy gain tuning response level setting	2	1 to 15	Set the response level. 1: Slow response to 15: Fast response
			0	Without easy gain tuning
819	Easy gain tuning selection	0	1	With load estimation, with gain calculation (valid only during vector control)
			2	With load (Pr: 880) manual input, gain calculation
820	Speed control P gain 1	60%*	0 to 1000%	Set the proportional gain for speed control. (Increasing the value improves trackability in response to a speed command change and reduces speed variation with disturbance.)
821	Speed control integral time 1	0.333s*	0 to 20s	Set the integral time during speed control. (Decrease the value to shorten the time taken for returning to the original speed if speed variation with disturbance occurs.)
880	Load inertia ratio	7 times	0 to 200 times	Set the load inertia ratio to the motor.

* Performing IPM parameter initialization changes the setting. (Refer to page 74.)

(1) Easy gain tuning execution procedure (*Pr.* 819 = "1" load inertia ratio automatic estimation)


Easy gain tuning (load inertia ratio automatic estimation) is valid only in the speed control or position control mode under vector control.

It is invalid under torque control, V/F control, Advanced magnetic flux vector control, Real sensorless vector control, and PM sensorless vector control.

1) Set the response level using *Pr. 818 Easy gain tuning response level setting*.

Refer to the diagram on the right and set the response level.

Increasing the value will improve trackability to the command, but too high value will generate vibration. The relationship between the setting and response level are shown on the right.

2) Each control gain is automatically set from the load inertia ratio estimated during acceleration/deceleration operation and the *Pr. 818 Easy gain tuning response level setting* value.

Pr. 880 Load inertia ratio is used as the initial value of the load inertia ratio for tuning. Estimated value is set in *Pr.* 880 during tuning.

The load inertia ratio may not be estimated well, e.g. it takes a long time for estimation, if the following conditions are not satisfied.

- \cdot Time taken for acceleration/deceleration to reach 1500r/min is 5s or less.
- · Speed is 150r/min or more.
- \cdot Acceleration/deceleration torque is 10% or more of the rated torque.
- \cdot Abrupt disturbance is not applied during acceleration/deceleration.
- \cdot Load inertia ratio is approx. 30 times or less.
- \cdot No gear backlash nor belt looseness is found.
- 3) Press (FWD) or (REV) to estimate the load inertia ratio or calculate gain any time. (The operation command for

External operation is the STF or STR signal.)

(2) Easy gain tuning execution procedure (Pr.819 = "2" load inertia manual input)

Easy gain tuning (load inertia ratio manual input) is valid in the speed control mode under Real sensorless vector control, the speed control and position control modes under vector control, and the speed control mode under PM sensorless vector control.

1) Set the load inertia ratio to the motor in Pr. 880 Load inertia ratio.

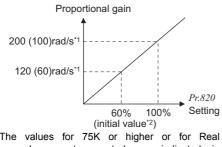
- 2) Set "2" (with easy gain tuning) in *Pr. 819 Easy gain tuning selection*. Then, *Pr. 820 Speed control P gain 1* and *Pr. 821 Speed control integral time 1* are automatically set by gain calculation. Operation is performed in a gain adjusted status from the next operation.
- 3) Perform a test run and set the response level in *Pr. 818 Easy gain tuning response level setting*. Increasing the value will improve trackability to the command, but too high value will generate vibration. (When "2" (parameter write enabled during operation) is set in *Pr. 77 Parameter write selection*, response level adjustment can be made during operation.)

REMARKS

- When "1 or 2" is set in *Pr. 819* and then returned the *Pr. 819* setting to "0" after tuning is executed, tuning results which are set in each parameter remain unchanged.
- When good tuning accuracy is not obtained after executing easy gain tuning due to disturbance and such, perform fine adjustment by manual input. Set "0" (without easy gain tuning) in *Pr. 819*.

(3) Parameters automatically set by easy gain tuning

The following table indicates the relationship between easy gain tuning function and gain adjustment parameter.

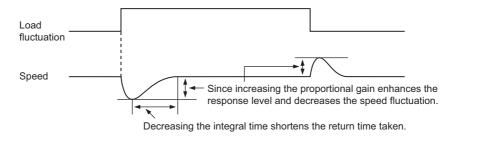

	Easy Gain Tuning Selection (Pr. 819) Setting			
	0	1	2	
Load inertia ratio (<i>Pr</i> : 880)	Manual input	 a) Inertia estimation result (RAM) by easy gain tuning is displayed. b) Set the value in the following cases: Every hour after power-on When a value other than "1" is set in <i>Pr. 819</i> When vector control is changed to other control (V/F control etc.) using <i>Pr. 800</i> c) Write is enabled only during a stop (manual input) 	Manual input	
Speed control P gain 1 (Pr. 820) Speed control integral time 1 (Pr. 821) Model speed control gain (Pr. 828) Position loop gain (Pr. 422)	Manual input	 a) Tuning result (RAM) is displayed. b) Set the value in the following cases: Every hour after power-on When a value other than "1" is set in <i>Pr. 819</i> When vector control is changed to other control (V/F control etc.) using <i>Pr. 800</i> c) Write (manual input) disabled 	 a) Gain is calculated when "2" is set in <i>Pr. 819</i> and the result is set in the parameter. b) When the value is read, the tuning result (parameter setting value) is displayed. c) Write (manual input) disabled 	

- CAUTION

• Performing easy gain tuning with larger inertia than the specified value during vector control may cause malfunction such as hunting. In addition, when the motor shaft is fixed with servo lock or position control, bearing may be damaged. To prevent these, make gain adjustment by manual input without performing easy gain tuning.

(4) Manual input speed control gain adjustment (*Pr.* 819 = "0" (without the easy gain tuning))

· Make adjustment when any of such phenomena as unusual machine vibration/noise, low response level and overshoot has occurred.



- · Pr. 820 Speed control P gain 1 = "60%" (initial value) is equivalent to 120rad/s (speed response of the motor alone). (Half the value for 75K or higher or for Real sensorless vector control.) Increasing the setting value improves the response level, but a too large gain will produce vibration and/or unusual noise.
- The values for 75K or higher or *1 sensorless vector control are indicated in parentheses.
- *2 Performing IPM parameter initialization changes the setting. (Refer to page 74.)

Decreasing the Pr. 821 Speed control integral time 1 shortens the

return time taken at a speed change. However, a too short time will generate an overshoot.

· When there is load inertia, the actual speed gain is as given below.

JM JM: Inertia of the motor Actual speed gain = speed gain of motor without load × JL: Motor shaft-equivalent load inertia JM+JL

· Adjustment procedures are as below:

1) Check the conditions and simultaneously change the Pr. 820 value.

2) If you cannot make proper adjustment, change the Pr. 821 value and repeat step 1).

No.	Phenomenon/ Condition	Adjustment Method		
		Set the Pr	820 and Pr. 821 values a little higher.	
	Load inertia	Pr. 820	When a speed rise is slow, increase the value 10% by 10% until just before	
1	is large	Fr. 020	vibration/noise is produced, and set about 0.8 to 0.9 of that value.	
	lo laige	Pr. 821	If an overshoot occurs, double the value until an overshoot does not occur, and	
			set about 0.8 to 0.9 of that value.	
		Set the Pr.	820 value a little lower and the <i>Pr.</i> 821 value a little higher.	
	Vibration/noise generated from mechanical system	Vibration/noise	Pr. 820	Decrease the value 10% by 10% until just before vibration/noise is not produced,
2		17. 020	and set about 0.8 to 0.9 of that value.	
		Pr: 821	If an overshoot occurs, double the value until an overshoot does not occur, and	
			set about 0.8 to 0.9 of that value.	
		Set the Pr	<i>820</i> value a little higher.	
3	Slow response	Pr. 820	When a speed rise is slow, increase the value 5% by 5% until just before	
		17. 02	17.020	vibration/noise is produced, and set about 0.8 to 0.9 of that value.
	Long return time	Set the Pr	821 value a little lower.	
4	(response time)	Decrease	the Pr. 821 value by half until just before an overshoot or the unstable phenomenon	
		does not o	ccur, and set about 0.8 to 0.9 of that value.	
Overshoot Set the <i>Pr. 821</i> value a little higher.		821 value a little higher.		
5	or unstable	Increase the Pr. 821 value double by double until just before an overshoot or the u		
	phenomenon occurs.	phenomenon does not occur, and set about 0.8 to 0.9 of that value.		

REMARKS

When making manual input gain adjustment, set "0" (without easy gain tuning) (initial value) in Pr. 819 Easy gain tuning selection.

(5) When using a multi-pole motor (8 poles or more)

Specially when using a multi-pole motor with more than 8 poles under Real sensorless vector control or vector control, adjust *Pr. 820 Speed control P gain 1* and *Pr. 824 Torque control P gain 1 (current loop proportional gain)* according to the motor referring to the following methods.

- For *Pr. 820 Speed control P gain 1*, increasing the setting value improves the response level, but a too large gain will produce vibration and/or unusual noise.
- For *Pr. 824 Torque control P gain 1 (current loop proportional gain)*, note that a too low value will produce current ripples, causing the motor to generate sound synchronizing the cycle of current ripples.

Adjustment method

No.	Phenomenon/Condition	Adjustment Method
1	The motor rotation is unstable in the low speed range.	Set a higher value in <i>Pr. 820 Speed control P gain 1</i> according to the motor inertia. Since the self inertia of a multi-pole motor tends to become large, make adjustment to improve the unstable phenomenon, then make fine adjustment in consideration of the response level using that setting as reference. In addition, when performing vector control, gain adjustment according to the inertia can be easily done using easy gain tuning (<i>Pr. 819</i> = 1).
2	Speed trackability is poor	Set a higher value in Pr. 820 Speed control P gain 1.
3	Speed variation at the load fluctuation is large	Increase the value 10% by 10% until just before vibration or unusual noise is produced, and set about 0.8 to 0.9 of that value. If you cannot make proper adjustment, increase the value of <i>Pr. 821 Speed control integral time 1</i> double by double and make adjustment of <i>Pr. 820</i> again.
4	Torque becomes insufficient or torque ripple occurs at starting or in the low speed range under Real sensorless vector control.	Set the speed control gain a little higher. (same as No. 1) If the problem still persists after gain adjustment, increase <i>Pr. 13 Starting</i> <i>frequency</i> or set the acceleration time shorter if the inverter is starting to avoid continuous operation in the ultra low speed range.
5	Unusual motor and machine vibration, noise or overcurrent occurs.	Set a lower value in <i>Pr. 824 Torque control P gain 1 (current loop proportional</i>
6	Overcurrent or overspeed (E.OS) occurs at a start under Real sensorless vector control.	<i>gain</i>). Decrease the value 10% by 10% until just before the phenomenon is improved, and set about 0.8 to 0.9 of that value.

3.2.15 Troubleshooting during speed control Sensorless Vector PM

No.	Phenomenon	Cause	Countermeasures
1	Motor does not rotate.	 (1) The motor wiring is wrong (2) Encoder specification selection switch (FR-A7AP/FR-A7AL (option)) is wrong. (3) The encoder wiring is wrong. 	 Wiring check Select V/F control (set "9999" in <i>Pr. 80</i> or <i>Pr. 81</i>) and check the rotation direction of the motor. For the SF-V5RU (1500r/min series), set "170V(340V)" for 3.7kW or lower and "160V(320V)" for more in <i>Pr. 19 Base</i> <i>frequency voltage</i>, and set "50Hz" in <i>Pr. 3 Base frequency</i>. When the forward rotation signal is input, the motor running in the counterclockwise direction as viewed from the motor shaft is normal. (If it runs in the clockwise direction, the phase sequence of the inverter secondary side wiring is incorrect.) Check the encoder specifications. Check the encoder specifications selection switch (FR- A7AP/FR-A7AL (option)) of differential/complementary Check that FWD is displayed when running the motor in the counter-clockwise direction from outside during a stop of the inverter with vector control setting. If REV is displayed, the encoder phase sequence is wrong. Check that the wiring is correct, and set the rotation direction in <i>Pr.359 Encoder rotation direction</i> according to the motor specification. Pr. 359 Relationship between the Motor and
	(Vector control)	 (4) The <i>Pr. 369 Number of encoder</i> <i>pulses</i> setting and the number of encoder used are different. (5) Encoder power specifications are wrong. Or, power is not input. 	Setting Encoder 0 Image: A constraint of the parameter setting is smaller than the number of encoder pulses used. Set the <i>Pr. 369 Number of encoder pulses</i> correctly. Set the <i>Pr. 369 Number of setting is the differential line driver type, only 5V can be input. Make the voltage of the external power supply the same as the encoder output voltage, and connect the external power supply between PG and SD. </i>
2	Motor does not run at correct speed. (Speed command does not match actual speed)	 The speed command from the command device is incorrect. The speed command is compounded with noise. The speed command value does not match the inverter- recognized value. The number of encoder pulses 	 (1) -1 Check that a correct speed command comes from the command device. (Take measures against noises.) (1) -2 Decrease <i>Pr. 72 PWM frequency selection.</i> (2) Readjust speed command bias/gain <i>Pr. 125, Pr. 126, C2 to C7</i> and <i>C12 to C15.</i> (3) Check the setting of <i>Pr. 369 Number of encoder pulses.</i> (vector
3	Speed does not rise to the speed command.	 setting is incorrect. (1) Insufficient torque. Torque limit is actuated. (2) Only P (proportional) control is selected. 	 control) (1) -1 Increase the torque limit value. (Refer to torque limit of speed control on <i>Chapter 4 of</i> <i>the Instruction Manual (Applied)</i>) (1) -2 Insufficient capacity (2) When the load is heavy, speed deviation will occur under P (proportional) control. Select PI control.

Before operation

No.	Phenomenon	Cause	Countermeasures
		(1) The speed command varies.	 (1) -1 Check that a correct speed command comes from the command device. (Take measures against noises.) (1) -2 Decrease <i>Pr. 72 PWM frequency selection.</i> (1) -3 Increase <i>Pr. 822 Speed setting filter 1. (Refer to Chapter 4 of</i>
4	Motor speed is unstable.	(2) Insufficient torque.	 (2) Increase the torque limit value. (Refer to torque limit of speed control on <i>Chapter 4 of</i> (1)
		(3) The speed control gains do not match the machine. (mechanical resonance)	 the Instruction Manual (Applied)) (3) -1 Perform easy gain tuning. (Refer to page 84) (3) -2 Adjust Pr. 820, Pr. 821. (Refer to page 86) (3) -3 Perform speed feed forward/model adaptive speed control.
5	Motor or machine hunts (vibration/ noise is produced).	(1) The speed control gain is high.(2) The torque control gain is high.	 (1) -1 Perform easy gain tuning. (<i>Refer to page 84</i>) (1) -2 Decrease <i>Pr. 820</i> and increase <i>Pr. 821</i>. (1) -3 Perform speed feed forward control and model adaptive speed control. (2) Decrease the <i>Pr. 824</i> value. (<i>Refer to Chapter 4 of List the Instruction Manual (Applied)</i>)
		(3) The motor wiring is wrong.	(3) Check the wiring
6	Acceleration/ deceleration time does not match the setting.	(1) Insufficient torque.(2) Large load inertia.	 (1) -1 Increase the torque limit value. (Refer to torque limit of speed control on <i>Chapter 4 of</i> <i>the Instruction Manual (Applied)</i>) (1) -2 Perform speed feed forward control. (2) Set the acceleration/deceleration time that meets the load.
7	Machine operation is unstable	 (1) The speed control gains do not match the machine. (2) Slow response because of improper acceleration/ deceleration time of the inverter. 	 -1 Perform easy gain tuning. (<i>Refer to page 84</i>) -2 Adjust <i>Pr. 820, Pr. 821. (Refer to page 86</i>) -3 Perform speed feed forward control and model adaptive speed control. (2) Change the acceleration/deceleration time to an optimum value.
8	Speed fluctuates at low speed.	(1) Adverse effect of high carrier frequency.(2) Low speed control gain.	(1) Decrease Pr. 72 PWM frequency selection.(2) Increase Pr. 820 Speed control P gain 1.

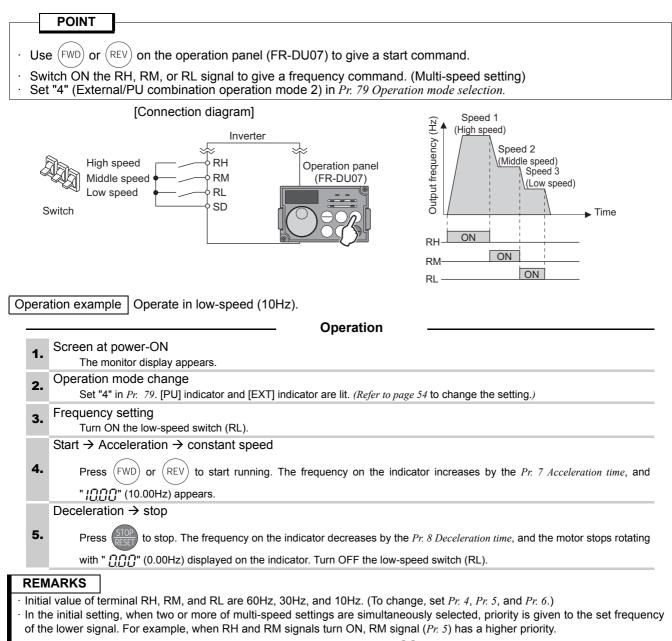
 \mathbb{Z}

3.3 Start/stop using the operation panel (PU operation)

POINT

- From where is the frequency command given?
- Operation at the frequency set in the frequency setting mode of the operation panel \rightarrow Refer to 3.3.1 (Refer to page 90)
- Operation using the setting dial as the potentiometer \rightarrow Refer to 3.3.2 (Refer to page 91)
- Change of frequency with ON/OFF switches connected to terminals \rightarrow Refer to 3.3.3 (Refer to page 92)
- Perform frequency setting using voltage input signal \rightarrow Refer to 3.3.4 (Refer to page 93)
- Perform frequency setting using current input signal \rightarrow Refer to 3.3.5 (Refer to page 94)

3.3.1 Setting the frequency to operate (example: performing operation at 30Hz)


Ope	ration panel (FR-DU07) is used to give both of frequency and start commands in PU operation.
	Operation panel (FR-DU07)
	Operation
1	Screen at power-ON The monitor display appears.
	Operation mode change
2	Press $\left(\frac{PU}{EXT}\right)$ to choose the PU operation mode. [PU] indicator is lit.
	Frequency setting
	Turn O to show the frequency "
-	value is flickering, press (SET) to set the frequency. "F" and "][[[[]]" flicker alternately. After the value flickered for
3	about 3s, the display returns to " [][][]" (monitor display).
	(If you do not press (SET), the value flickers for about 5s and the display then returns to " []]]" (0.00Hz). In that case,
	turn O again, and set the frequency.)
	Start \rightarrow acceleration \rightarrow constant speed
4	Press (FWD) or (REV) to start running. The frequency on the indicator increases by the Pr. 7 Acceleration time, and
	"] [] [] [] (30.00Hz) appears. (To change the set frequency, perform the operation in above step 3. Starting from the previously set frequency.)
	Deceleration → Stop
5	Press STOP to stop.
	The frequency on the indicator decreases by the <i>Pr. 8 Deceleration time</i> , and the motor stops rotating with "
RE	MARKS
·Pi	ess O to show the set frequency under PU operation mode or External/PU combined operation mode 1 (<i>Pr. 79</i> = "3")
. (can also be used like a potentiometer to perform operation. (<i>Refer to page 91</i>)

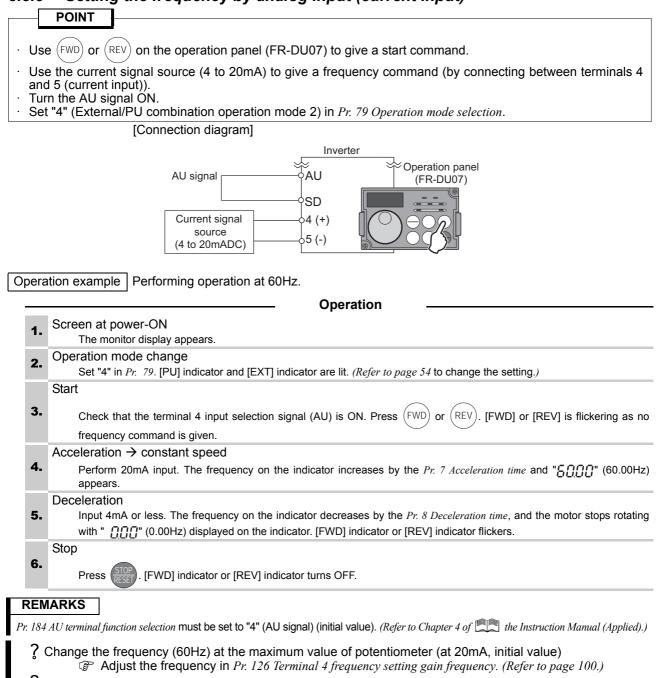
3.3.2 Using the setting dial like a potentiometer to perform operation.

POINT
Set "1" (setting dial potentiometer mode) in Pr. 161 Frequency setting/key lock operation selection.
Operation example Change the frequency from 0Hz to 60Hz during operation
Operation
1. Screen at power-ON The monitor display appears.
Operation mode change
2. Press $\underbrace{(PU)}_{EXT}$ to choose the PU operation mode. [PU] indicator is lit.
3. Parameter setting change
Change <i>Pr. 161</i> to the setting value " <i>¦</i> ". (<i>Refer to page 54</i> to change the setting.)
4. Start Press (FWD) (or (REV)) to start the inverter.
Frequency setting
5. Turn O until " 6000 " appears. The flickering frequency is the set frequency. (The frequency flickers for about 5s.)
You need not press (SET).
REMARKS
• If flickering "60.00" turns to "0.0", the Pr. 161 Frequency setting/key lock operation selection setting may not be "1".
\cdot Independently of whether the inverter is running or at a stop, the frequency can be set by merely turning $ \bigcirc $.
• When setting frequency by turning setting dial, the frequency goes up to the set value of <i>Pr. 1 Maximum frequency</i> . Be aware of

• When setting frequency by turning setting dial, the frequency goes up to the set value of *Pr. 1 Maximum frequency*. Be aware of what frequency *Pr. 1 Maximum frequency* is set to, and adjust the setting of *Pr. 1 Maximum frequency* according to the application.

3.3.3 Setting the frequency by switches (multi-speed setting)

· Maximum of 15-speed operation can be performed. (Refer to Chapter 4 of 2) the Instruction Manual (Applied).)


3.3.4 Setting the frequency by analog input (voltage input)

	POINT
Us	e (FWD) or (REV) on the operation panel (FR-DU07) to give a start command.
	e the potentiometer to give a frequency command. (by connecting terminal 2 and 5 (voltage input))
Se	t "4" (External/PU combination operation mode 2) in <i>Pr. 79 Operation mode selection</i> .
	[Connection diagram] (The inverter supplies 5V of power to the frequency setting potentiometer.(Terminal 10))
	Inverter
	Frequency setting potentiometer Potentiometer
)pera	ation example Performing operation at 60Hz.
	Operation
1.	Screen at power-ON The monitor display appears.
2.	Operation mode change
	Set "4" in <i>Pr.</i> 79. [PU] indicator and [EXT] indicator are lit. (<i>Refer to page 54</i> to change the setting.)
2	Start
3.	Press (FWD) or (REV). [FWD] or [REV] is flickering as no frequency command is given.
	Acceleration \rightarrow constant speed
4.	Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. The frequency value on the indicator
	increases according to <i>Pr. 7 Acceleration time</i> until " GOO " (60Hz) is displayed. Deceleration
_	Turn the potentiometer (frequency setting potentiometer) counterclockwise slowly to full. The frequency on the indicator
5.	decreases by the <i>Pr. 8 Deceleration time</i> , and the motor stops rotating with " [][][" (0.00Hz) displayed on the indicator. [FWD] indicator or [REV] indicator flickers.
	Stop
6.	Press (STOP). [FWD] indicator or [REV] indicator turns OFF.

Adjust the frequency in *Pr. 125 Terminal 2 frequency setting gain frequency. (Refer to page 98.)* Change the frequency (0Hz) of the minimum value of potentiometer (at 0V, initial value)
 Adjust the frequency in *calibration parameter C2 Terminal 2 frequency setting bias frequency. (Refer to page 98.)*

Chapter 4 of the Instruction Manual (Applied).)

3.3.5 Setting the frequency by analog input (current input)

- ? Change the frequency (0Hz) at the minimum value of potentiometer (at 4mA, initial value)
 - P Adjust the frequency in calibration parameter C5 Terminal 4 frequency setting bias frequency. (Refer to Chapter 4 of 2) the Instruction Manual (Applied).)

3.4 Start and stop using terminals (External operation)

POINT
 From where is the frequency command given? Operation at the frequency set in the frequency setting mode of the operation panel → Refer to 3.4.1 (Refer to page 95) Give a frequency command by switch (multi-speed setting) → Refer to 3.4.2 (Refer to page 96) Perform frequency setting using voltage input signal → Refer to 3.4.3 (Refer to page 97) Perform frequency setting using current input signal → Refer to 3.4.5 (Refer to page 99)
3.4.1 Setting the frequency by the operation panel (Pr. 79 = 3)
Switch ON the STF (STR) signal to give a start command.
 Use () on the operation panel (FR-DU07) to give a frequency command. Set "3" (External/PU combination operation mode 1) in <i>Pr. 79 Operation mode selection</i>.
[Connection diagram]
Forward rotation Switch Start STF Switch Start SD Operation panel (FR-DU07)
Operation example Performing operation at 30Hz.
Operation
 Screen at power-ON The monitor display appears. Operation mode change Set "3" in Pr. 79. [PU] indicator and [EXT] indicator are lit. (Refer to page 54 to change the setting.) Frequency setting Turn Turn Turn Turn Turn Turn Turn Turn Turn
motor decelerates to a stop.
REMARKS • Pr. 178 STF terminal function selection must be set to "60" (or Pr. 179 STR terminal function selection must be set to "61"). (all are initial values) • When Pr. 79 Operation mode selection is set to "3", multi-speed operation (refer to page 96) is also valid. ? When the inverter is stopped by (SOP) of the operation panel (FR-DU07), (PS) and (SOP) and (SOP) of the operation panel (FR-DU07), (SOP) and (SOP) and (SOP) are related by (SOP) of the operation panel (FR-DU07), (SOP) and (SOP) are related by (SOP) of the operation panel (FR-DU07), (SOP) and (SOP) are related by (SOP) of the operation panel (FR-DU07), (SOP) and (SOP) are related by (SOP) are related by (SOP) of the operation panel (FR-DU07), (SOP) and (SOP) are related by (SOP) are related by (SOP) are related by (SOP) are related by (SOP) of the operation panel (FR-DU07), (SOP) and (SOP) are related by (SOP) ar
2. The display can be reset by $\left(\frac{PU}{EXT}\right)$.

3.4.2 Setting the frequency by switches (multi-speed setting) (Pr. 4 to Pr. 6)

	RH, RM, or RL s	5 5	
nnection diagram	l		
Reverse	rotation start	Inverter STF STR RH RH RL SD	Speed 1 (High speed) (Middle speed) Speed 2 (Middle speed) Speed 3 (Low speed) Time RH
nanging example	e Operation at	high speed (60Hz)	RL ON
nanging exampl	e Operation at	high speed (60Hz)	RL ON
1. Screen at p			RL ON
1. Screen at p The mo Frequency	oower-ON nitor display appea	Irs.	RL ON
 Screen at p The mo Frequency Turn Ol Start → acc Turn O Start → acc Turn O when 	oower-ON nitor display appea setting N the high-speed sv celeration → con N the start switch]" (60.00Hz) appe	witch (RH). Instant speed (STF or STR). The f ears. [FWD] indicator 30Hz is displayed.	RL ON

REMARKS

· Initial value of terminal RH, RM, and RL are 60Hz, 30Hz, and 10Hz. (To change, set Pr. 4, Pr. 5, and Pr. 6.)

• In the initial setting, when two or more of multi-speed settings are simultaneously selected, priority is given to the set frequency of the lower signal. For example, when RH and RM signals turn ON, RM signal (*Pr. 5*) has a higher priority.

Maximum of 15-speed operation can be performed. (*Refer to Chapter 4 of* the Instruction Manual (Applied).)

3.4.3 Setting the frequency by analog input (voltage input)

	[Connection diagram]					
	(The inverter supplies 5V of power to frequency setting potentiometer. (Terminal 10))					
	Inverter					
	Forward rotation start Reverse rotation start Switch					
	Frequency setting potentiometer					
hera	ation example Performing operation at 60Hz.					
	Operation					
1.	Screen at power-ON					
	The monitor display appears.					
2.	Start					
2.						
	 Start Turn the start switch (STF or STR) on. [FWD] or [REV] is flickering as no frequency command is given. Acceleration → constant speed Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. 					
2. 3.	Start Turn the start switch (STF or STR) on. [FWD] or [REV] is flickering as no frequency command is given. Acceleration → constant speed Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. The frequency on the indicator increases by the Pr. 7 Acceleration time, and "£[][]]" (60.00Hz) appears. [FWD] indicator is lit during forward rotation, and [REV] indicator is lit during reverse rotation.					
	Start Turn the start switch (STF or STR) on. [FWD] or [REV] is flickering as no frequency command is given. Acceleration → constant speed Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. The frequency on the indicator increases by the Pr. 7 Acceleration time, and "COOD" (60.00Hz) appears. [FWD] indicator is lit during forward rotation, and [REV] indicator is lit during reverse rotation. Deceleration					
	Start Turn the start switch (STF or STR) on. [FWD] or [REV] is flickering as no frequency command is given. Acceleration → constant speed Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. The frequency on the indicator increases by the Pr. 7 Acceleration time, and "5000" (60.00Hz) appears. [FWD] indicator is lit during forward rotation, and [REV] indicator is lit during reverse rotation. Deceleration Turn the potentiometer (frequency setting potentiometer) counterclockwise slowly to full.					
3.	Start Turn the start switch (STF or STR) on. [FWD] or [REV] is flickering as no frequency command is given. Acceleration → constant speed Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. The frequency on the indicator increases by the Pr. 7 Acceleration time, and "COOD" (60.00Hz) appears. [FWD] indicator is lit during forward rotation, and [REV] indicator is lit during reverse rotation. Deceleration					
3.	Start Turn the start switch (STF or STR) on. [FWD] or [REV] is flickering as no frequency command is given. Acceleration → constant speed Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. The frequency on the indicator increases by the <i>Pr. 7 Acceleration time</i> , and "and "and "and "and "and "and "and					

REMARKS

Pr. 178 STF terminal function selection must be set to "60" (or *Pr. 179 STR terminal function selection* must be set to "61"). (all are initial values)

<How to change the maximum frequency>

3.4.4 Changing the output frequency (60Hz, initial value) at the maximum voltage input (5V, initial value)

Changing example When you use the 0 to 5VDC input and want to change the frequency at 5V from 60Hz (initial value) to 50Hz, set "50Hz" in Pr. 125. Operation Selecting the parameter number until P 125 (Pr. 125) appears. Turn 1. Press (SET) to show the present set value. (60.00Hz) Changing the maximum frequency Turn to change the set value to "San ". (50.00Hz). 2. to set. " $\subseteq \square \square \square$ " and "P, $I \ge G$ " flicker alternately. Press (SET Mode/monitor check 3. Press (MODE) twice to choose the monitor/frequency monitor. Start 4. To check the setting, turn the start switch (STF or STR) ON and input 5V (turn the potentiometer clockwise slowly to full.) (Refer to 3.4.3 steps 2 and 3) ? The frequency meter (indicator) connected across terminals FM and SD does not indicate exactly 50Hz ... Why? The meter can be adjusted by calibration parameter C0 FM terminal calibration. (Refer to Chapter 4 of the Instruction Manual (Applied).) ? Set frequency at 0V using *calibration parameter* Initial value C2 and adjust the indicator using calibration 60Hz Output frequency (Hz) parameter C0. (Refer to Chapter 4 of 🛄 the Instruction Manual (Applied).) Gain Pr.125 Bias C2(Pr. 902) 0 100% 0 5V Frequency setting signal 10V0 20mA 0 C3 (Pr. 902) C4 (Pr. 903)

REMARKS

As other adjustment methods of frequency setting voltage gain, there are methods to adjust with a voltage applied across terminals 2 and 5 or adjust at any point without a voltage applied.

(Refer to Chapter 4 of the Instruction Manual (Applied) for the setting method of calibration parameter C4.)

3.4.5 Setting the frequency by analog input (current input)

Se	t "2" (External operation mode) in Pr. 79 Operation mode selection.
	[Connection diagram]
Dera	Forward rotation start Reverse rotation start Switch Current signal source (4 to 20mADC) Performing operation at 60Hz.
	Operation
1.	Operation Screen at power-ON The monitor display appears.
1. 2.	Screen at power-ON
	Screen at power-ON The monitor display appears. Start Check that the terminal 4 input selection signal (AU) is ON. Turn the start switch (STF or STR) ON. [FWD] or [REV] is flickering as no frequency command is given Acceleration → constant speed Perform 20mA input. The frequency on the indicator increases by the <i>Pr. 7 Acceleration time</i> , and "&``O``" (60.00Hz) appears.
2.	Screen at power-ON The monitor display appears. Start Check that the terminal 4 input selection signal (AU) is ON. Turn the start switch (STF or STR) ON. [FWD] or [REV] is flickering as no frequency command is given Acceleration → constant speed Perform 20mA input. The frequency on the indicator increases by the <i>Pr. 7 Acceleration time</i> , and "£000" (60.00Hz)

/

REMARKS

Pr. 184 AU terminal function selection must be set to "4" (AU signal) (initial value). (*Refer to Chapter 4 of* the Instruction Manual (Applied).)

<How to change the maximum frequency?>

Changing the output frequency (60Hz, initial value) at the maximum current input 3.4.6 (at 20mA, initial value)

 1. Turn ⁽²⁾ until P, 125 (Pr. 126) appears. Press ^(SET) to show the present set value. (60.00Hz) Changing the maximum frequency 2. Turn ⁽²⁾ to change the set value to "5000". (50.00Hz) Press ^(SET) to set the value. "5000" and "P. 125" flicker alternately. Mode/monitor check Press ^(MODE) twice to choose the monitor/frequency monitor. 3. Press ^(MODE) twice to choose the monitor/frequency monitor. 4. Start To check the setting, turn the start switch (STF or STR) ON and input 20mA. (Refer to 3.4.5 steps 2 and 3) ? Set frequency at 4mA using <i>calibration</i> parameter C5 and adjust the indicator using calibration parameter C0. (Refer to Chapter 4 of ^(E)) the Instruction Manual (Applied).) 		Operation	
Press (SET) to show the present set value. (60.00Hz) Changing the maximum frequency Tum (O) to change the set value to " $\subseteq \square \square$ ". (50.00Hz) Press (SET) to set the value. " $\subseteq \square \square$ " and " P . $! \ge \Box$ " flicker alternately. Mode/monitor check Press $(MODE)$ twice to choose the monitor/frequency monitor. 4. Start To check the setting, turn the start switch (STF or STR) ON and input 20mA. (Refer to 3.4.5 steps 2 and 3) ? Set frequency at 4mA using calibration parameter C5 and adjust the indicator using calibration parameter C0. (Refer to Chapter 4 of (\square) the Instruction Manual (Applied).) (Pr. 904) (D)	Selecting the parameter number		
 Changing the maximum frequency Tum to change the set value to "\$\[color flightharpoondownode for the value." \[color flightharpoondownode	1. Turn \bigcirc until $P_1 \mid 2 \in (Pr. 126)$ appears.		
 Turn is to change the set value to "Sinn". (50.00Hz) Press SET to set the value. "Sinn". (50.00Hz) Press SET to set the value. "Sinn". (50.00Hz) Mode/monitor check Press MODE twice to choose the monitor/frequency monitor. Start To check the setting, turn the start switch (STF or STR) ON and input 20mA. (Refer to 3.4.5 steps 2 and 3) ? Set frequency at 4mA using calibration parameter C5 and adjust the indicator using calibration parameter C0. (Refer to Chapter 4 of mean the Instruction Manual (Applied).) Bias C5 (Pr. 904) Question of the Start Start	Press (SET) to show the present set value. (60.00H	łz)	
Press SET to set the value. " $\subseteq \subseteq \subseteq \subseteq$ " flicker alternately. Mode/monitor check Press MODE twice to choose the monitor/frequency monitor. 4. Start To check the setting, turn the start switch (STF or STR) ON and input 20mA. (Refer to 3.4.5 steps 2 and 3) ? Set frequency at 4mA using calibration parameter C5 and adjust the indicator using calibration parameter C0. (Refer to Chapter 4 of me the Instruction Manual (Applied).) Gain Pr. I Bias C5 (Pr. 904) O O C5 (Pr. 904) O O O O O O O O	Changing the maximum frequency		
Mode/monitor check Press MODE twice to choose the monitor/frequency monitor. 4. Start To check the setting, turn the start switch (STF or STR) ON and input 20mA. (Refer to 3.4.5 steps 2 and 3) ? Set frequency at 4mA using calibration parameter C5 and adjust the indicator using calibration parameter C0. (Refer to Chapter 4 of Regent the Instruction Manual (Applied).) Gain Pr. I Bias C5 (Pr. 904) 0 20 4 Frequency setting signal 20mA	2. Turn O to change the set value to "5000". (5	0.00Hz)	
 3. Press MODE twice to choose the monitor/frequency monitor. 4. Start To check the setting, turn the start switch (STF or STR) ON and input 20mA. (Refer to 3.4.5 steps 2 and 3) ? Set frequency at 4mA using calibration parameter C5 and adjust the indicator using calibration parameter C0. (Refer to Chapter 4 of ment the Instruction Manual (Applied).) Gain Pr. I Bias (C5) (Pr. 904) C5 and adjust the indicator using calibration for the Instruction Manual (Applied).) 	Press (SET) to set the value. "SOOO" and "P 12	${\it 5}$ " flicker alternately.	
Press (MODE) twice to choose the monitor/frequency monitor. 4. Start To check the setting, turn the start switch (STF or STR) ON and input 20mA. (Refer to 3.4.5 steps 2 and 3) ? Set frequency at 4mA using calibration parameter C5 and adjust the indicator using calibration parameter C0. (Refer to Chapter 4 of men the Instruction Manual (Applied).) Gifting C5 (Pr. 904) = 0 Gifting			
To check the setting, turn the start switch (STF or STR) ON and input 20mA. (Refer to 3.4.5 steps 2 and 3) ? Set frequency at 4mA using calibration parameter C5 and adjust the indicator using calibration parameter C0. (Refer to Chapter 4 of 10 the Instruction Manual (Applied).) b ias C5 (Pr: 904) b ias (Pr: 904) (Pr: 90		monitor.	
parameter C5 and adjust the indicator using calibration parameter C0. (Refer to Chapter 4 of 12 the Instruction Manual (Applied).) Bias C5 (Pr. 904) 0 20 0 4 Frequency setting signal 20mA		TR) ON and input 20mA. (Refer to	3.4.5 steps 2 and 3)
0 2 10V	 parameter C5 and adjust the indicator using calibration parameter C0. (Refer to Chapter 4 of number of the Instruction Manual) 	So 60Hz Grand Solution	Gain Pr. 120 Gain Signal 20mA
		C6 (Pr. 904)	C7 (Pr. 905)

As other adjustment methods of frequency setting voltage gain, there are methods to adjust with a voltage applied across terminals 4 and 5 or adjust at any point without a voltage applied.

(Refer to Chapter 4 of 1) the Instruction Manual (Applied) for the setting method of calibration parameter C7.)

3.5 Parameter List

- $\cdot ~$ \circledast indicates simple mode parameters.
- · "O" indicates enabled and "×" indicates disabled of "parameter copy", "parameter clear", and "all parameter clear".
- \cdot "O*" indicates a communication parameter which is not cleared by parameter clear (all clear) from the RS-485

communication. (For the RS-485 communication, refer to Chapter 4 in the Instruction Manual (Applied).)

Pr.112) 0 (©) 46 112 The initial va	the output torque Torque boost Second torque boost Third torque boost	0.1%	6/4/3/2/	the motor	— Manual torque boost (Pr.0, Pr.46,										
0 46 112 The initial va	Second torque boost			Adjusting the output torque (current) of the motor — Manual torque boost (Pr.0, Pr.46, Pr.112)											
40 112 The initial va	boost	0.10/	1%∗	0 to 30%	Set the output voltage at 0Hz as %.	0	0	0							
112 The initial va		0.1%	9999	0 to 30% 9999	Set the torque boost when the RT signal is on. Without second torque boost	0	0	0							
The initial va		0.1%	9999	0 to 30%	Set the torque boost when the X9 signal is on.	0	0	0							
	-			9999	Without third torque boost	Ŭ		0							
imiting th	-				(/ 1.5K to 3.7K / 5.5K, 7.5K / 11K to 55K / 75K or higher)										
	he output frequen	су — N	1	im/minimi	um frequency (Pr.1, Pr.2, Pr.18)			-							
1 (0)	Maximum frequency	0.01Hz	120/ 60Hz *1*2	0 to 120Hz	Set the upper limit of the output frequency.	0	0	0							
2 🔘	Minimum frequency	0.01Hz	0Hz	0 to 120Hz	Set the lower limit of the output frequency.	0	0	0							
18	High speed maximum frequency	0.01Hz	120/ 60Hz *1*2	120 to 400Hz *3	Set when performing the operation at 120Hz or more.	0	0	0							
	n frequency is limited to the setting — Base				(Pr.3, Pr.19, Pr.47, Pr.113)		V/F								
3 🔘	Base frequency	0.01Hz	60Hz	0 to 400Hz	Set the frequency when the motor rated torque is generated. (50Hz/60Hz)	0	0	0							
	Base frequency			0 to 1000V	Set the base voltage.										
19	voltage	0.1V	9999	8888	95% of power supply voltage	0	0	0							
	-			9999	Same as power supply voltage			╞							
	Second V/F (base	0.01Hz	9999	0 to 400Hz	Set the base frequency when the RT signal is on.	0	0	0							
	frequency)			9999 0 to 400Hz	Second V/F is invalid Set the base frequency when the X9 signal is ON.										
	Third V/F (base frequency)	0.01Hz	9999	9999	Third V/F is invalid	0	0	0							
requency	y setting with term	ninals (contac	t input) –	 Multi-speed setting operation 	L	L								
Pr.4 to Pr	.6, Pr.24 to Pr.27,	Pr.232	to Pr.2	39)											
	Multi-speed setting (high speed)	0.01Hz	60Hz *	0 to 400Hz	Set the frequency which is applied when RH turns ON.	0	0	0							
	Multi-speed setting (middle speed)	0.01Hz	30Hz	0 to 400Hz	Set the frequency which is applied when RM turns ON.	0	0	0							
	Multi-speed setting (low speed)	0.01Hz	10Hz	0 to 400Hz	Set the frequency which is applied when RL turns ON.	0	0	0							
to	Multi-speed setting (4 speed to 7 speed)	0.01Hz	9999	0 to 400Hz, 9999	Frequency from 4 speed to 15 speed can be set according to the combination of the RH, RM, RL and	0	0	0							
to	Multi-speed setting (8 speed to 15 speed)	0.01Hz	9999	0 to 400Hz, 9999	REX signals. 9999: not selected	0	0	0							

DRIVING THE MOTOR

Paran	Related parameters	Name	Incre- ments	Initial Value	Range	Descrip	tion	Parameter copy	Parameter clear	All parameter clear
			-		-	- Acceleration/decel				
settii	ng (P	r.7, Pr.8, Pr.20, Pr.	-	14, Pr.4		Pr.111, Pr.147, Pr.791,	Pr.792)	1		
7 (0	Acceleration time	0.1/ 0.01s	5/15s *1	0 to 3600/ 360s	Set the motor acceleration til	me.	0	0	0
8 (0	Deceleration time	0.1/ 0.01s	5/15s *1	0 to 3600/ 360s	Set the motor deceleration til	me.	0	0	0
	20	Acceleration/ deceleration reference frequency	0.01Hz	60Hz *2	1 to 400Hz	Set the frequency referenced deceleration time. Set the free stop to <i>Pr. 20</i> for acceleration	quency change time from	0	0	0
	21	Acceleration/ deceleration time	1	0	0	Increments: 0.1s Range: 0 to 3600s	The increments and setting range of acceleration/ deceleration time	0	0	0
		increments			1	Increments: 0.01s Range: 0 to 360s	setting can be changed.			
	44	Second acceleration/ deceleration time	0.1/ 0.01s	5s	0 to 3600/ 360s	Set the acceleration/decelera signal is on.	ation time when the RT	0	0	0
	45	Second deceleration time	0.1/ 0.01s	9999	0 to 3600/ 360s	Set the deceleration time whe	n the RT signal is on.	0	0	0
			0.013		9999	Acceleration time = decelera	tion time			
	110	Third acceleration/ deceleration time	0.1/ 0.01Hz	9999	0 to 3600/ 360s	Set the acceleration/decelera signal is on.	ation time when the X9	0	0	0
			0.01112		9999	Function invalid				
	111	Third deceleration time	0.1/ 0.01Hz	9999	0 to 3600/ 360s	Set the deceleration time wh	en the X9 signal is on.	0	0	0
		une	0.01112		9999	Acceleration time = decelera	tion time			
	147	Acceleration/ deceleration time	0.01Hz	9999	0 to 400Hz	Frequency when automatica acceleration/deceleration time		0	0	0
		switching frequency			9999	No function				
	791	Acceleration time in	0.1/		0 to 3600/ 360s	Set the acceleration time in a than 1/10 of the rated motor				
	> M	low-speed range	0.01s	9999	9999	The acceleration time set in a the second functions are ena applied.)	•• •	0	0	0
	792	Deceleration time in	0.1/		0 to 3600/ 360s	Set the deceleration time in a than 1/10 of the rated motor				
	792 > M	low-speed range	0.01s	9999	9999	The deceleration time set in the second functions are ena applied.)		0	0	0
*2 P	erformi	al value differs according t ng IPM parameter initializ	ation cha	nges the s	settings. (Refe	er to page 74)				
		•			•	ection from overheat				
(elec	troni	c thermal relay fu	nction)	(Pr.9,	Pr.51)					
9 (0	Electronic thermal O/L relay	0.01/ 0.1A *1	Inverter rated current *2	0 to 500/ 0 to 3600A *1	Set the rated motor current.		0	0	0
	51	Second electronic thermal O/L relay	0.01/ 0.1A *1	9999	0 to 500/ 0 to 3600A *1	Valid when the RT signal is c Set the rated motor current.	n.	0	0	0
	nsorless /ector	alerniai O/E feldy	0.171		9999	Second electronic thermal O	/L relay invalid			
		ements and setting range ng IPM parameter initializ				apacity. (55K or lower/75K or hig er to <i>page 74</i>)	gher)			

Parameter Barameters	Name	Incre- ments	Initial Value	Range	Descrip	otion	Parameter copy	Parameter clear	All parameter clear
Motor bra	ake and stop opera	ation —	DC in	jection br	ake and Pre-excitatior	n (Pr.10 to Pr.12,			
Pr.802, P	r.850)								
10	DC injection brake	0.01Hz	3/0.5Hz	0 to 120Hz	Set the operation frequency brake.	of the DC injection	0	0	0
	operation frequency		*1	9999	Operate when the output frequency becomes less than or equal to <i>Pr. 13 Starting frequency</i> .				
	DC injection brake			0	DC injection brake disabled				
11	operation time	0.1s	0.5s	0.1 to 10s	Set the operation time of the DC	C injection brake.	0	0	0
				8888	Operated while the X13 signal is on.				
12	DC injection brake		4/2/1%	0	DC injection brake disabled				
Magnetic flux	operation voltage	0.1%	4/2/17/0 *2	0.1 to 30%	Set the DC injection brake vo	ltage (torque).	0	0	0
802	Pre-excitation			0	Zero speed control	Setting can be made			
Vector P M	selection	1	0	1	Servo lock	under vector control.	0	0	0
				0	DC injection brake				
850 Vector	Brake operation selection	1	0	1	Zero speed control (under R control)	eal sensorless vector	0	0	0
				2	Magnetic flux decay output s sensorless vector control)	shutoff (under Real			
	Ũ				other than vector is changed to lower/11K to 55K/75K or higher				
Accelera	tion/deceleration t	ime/pat	ttern ad	djustment	t — Starting frequency	r (Pr.13, Pr.571)			
13	Starting frequency	0.01Hz	0.5Hz *	0 to 60Hz	Starting frequency can be set If the set frequency is set hig frequency under PM sensorl output starts at 0.01Hz.	pher than the start	0	0	0
571				0.0 to 10.0s	Set the holding time of Pr. 13	Starting frequency.			
Magnetic flux Sensorless Vector	Holding time at a start	0.1s	9999	9999	Holding function at a start is	invalid	0	0	0
* Performing	IPM parameter initializati	on change	s the set	tings. (Refer t	0 page 74)				1
V/F patte	rn setting — V/F p	attern s	suitable	e for the a	pplication (Pr.14)		C	V/F	_
	 			0	For constant-torque load				
				1	For variable-torque load		1		
				2		Boost for reverse rotation 0%	-		
				3	For constant-torque lift	For constant-torque lift For constant-torque lift Boost for forward rotation 0%			
14	Load pattern selection	1	0	4	RT signal ONFor constant-torque load (Same as in setting 0) RT signal OFF For constant-torque lift Boost for reverse rotation 0% (Same as in setting 2) RT signal ONFor constant-torque load (Same as in setting 0) RT signal OFF For constant-torque lift Boost for forward rotation 0% (Same as in setting 3)		0	0	0
				5					

Parameter parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear
Frequen	cy setting with tern	ninals (contac	ct input) –	- Jog operation (Pr.15, Pr.16)			
15	Jog frequency	0.01Hz	5Hz ∗	0 to 400Hz	Set the frequency for jog operation.	0	0	0
16	Jog acceleration/ deceleration time	0.1/ 0.01s	0.5s	0 to 3600/ 360s	Set the acceleration/deceleration time for jog operation. Set the time taken to reach the frequency set in <i>Pr. 20 Acceleration/deceleration reference</i> <i>frequency</i> for acceleration/deceleration time. (Initial value is 60Hz) In addition, acceleration/deceleration time can not be set separately.	0	0	0
* Performing	g IPM parameter initialization	on change	s the set	tings. (Refer to	0 page 74)			
	assignment of ext IRS) (Pr.17)	ernal te	ermina	I and cont	rol — Logic selection of the output stop			
				0	Open input always			
17	MRS input selection	1	0	2	Normally closed input (NC contact input specifications)	0	0	0
				4	External terminal:Normally closed input (NC contact input specifications) Communication :Normally open input			
18	Refer to Pr. 1 and Pr.	2.						
	Refer to Pr. 3.							
19	Relef to Pr. 3.							
19 20, 21	Refer to <i>Pr. 3.</i> Refer to <i>Pr. 7 and Pr.</i>	8.						
20, 21 Adjustin	Refer to <i>Pr. 7 and Pr.</i> g the output torque	e (curre			— Stall prevention (Pr.22, Pr.23, Pr.48, Pr.156, Pr.157, Pr.858, Pr.868)		V/F gnetic (
20, 21 Adjustin	Refer to <i>Pr. 7 and Pr.</i> g the output torque	e (curre			Pr.156, Pr.157, Pr.858, Pr.868) Stall prevention operation selection becomes invalid. Function as stall prevention operation under V/F control and Advanced magnetic flux vector control.			
20, 21 Adjustin Pr.49, Pr. 22	Refer to <i>Pr. 7 and Pr.</i> g the output torque .66, Pr.114, Pr.115, I Stall prevention operation level Stall prevention operation level	e (curre Pr.148,	Pr.149	0 Pr.154, F	Pr.156, Pr.157, Pr.858, Pr.868) Stall prevention operation selection becomes invalid. Function as stall prevention operation under V/F control and Advanced magnetic flux vector control. Set the current value at which stall prevention operation is started.	(Mag	gnetic 1	ilux
20, 21 Adjustin Pr.49, Pr.	Refer to <i>Pr. 7 and Pr.</i> g the output torque .66, Pr.114, Pr.115, I Stall prevention operation level Stall prevention	e (curre Pr.148,	Pr.149	0 0.1 to 400%	Pr.156, Pr.157, Pr.858, Pr.868) Stall prevention operation selection becomes invalid. Function as stall prevention operation under V/F control and Advanced magnetic flux vector control. Set the current value at which stall prevention operation is started. Refer to <i>page 105</i> for torque limit level. The stall operation level can be reduced when	(Mag	gnetic 1	ilux
20, 21 Adjustin Pr.49, Pr. 22 23	Refer to Pr. 7 and Pr. g the output torque .66, Pr.114, Pr.115, I Stall prevention operation level Stall prevention operation level compensation factor at double speed Second stall	• (curre Pr.148, 0.1%	Pr.149 150% 9999	 Pr.154, F 0 0.1 to 400% 0 to 200% 	Pr.156, Pr.157, Pr.858, Pr.868) Stall prevention operation selection becomes invalid. Function as stall prevention operation under V/F control and Advanced magnetic flux vector control. Set the current value at which stall prevention operation is started. Refer to page 105 for torque limit level. The stall operation level can be reduced when operating at a high speed above the rated frequency.	0 0	O O	0
20, 21 Adjustin Pr.49, Pr. 22	Refer to Pr. 7 and Pr. g the output torque .66, Pr.114, Pr.115, I Stall prevention operation level Stall prevention operation level compensation factor at double speed	• (curre Pr.148, 0.1%	Pr.149 150%	 Pr.154, F 0 0.1 to 400% 0 to 200% 9999 	Pr.156, Pr.157, Pr.858, Pr.868) Stall prevention operation selection becomes invalid. Function as stall prevention operation under V/F control and Advanced magnetic flux vector control. Set the current value at which stall prevention operation is started. Refer to page 105 for torque limit level. The stall operation level can be reduced when operating at a high speed above the rated frequency. Constant according to Pr: 22 Second stall prevention operation invalid	(Mag	o o	0
20, 21 Adjustin Pr.49, Pr. 22 23	Refer to Pr. 7 and Pr. g the output torque .66, Pr.114, Pr.115, I Stall prevention operation level compensation factor at double speed Second stall prevention operation current	• (curre Pr.148, 0.1%	Pr.149 150% 9999	Pr.154, F 0 0.1 to 400% 0 to 200% 9999 0 0.1 to 220% 0	Pr.156, Pr.157, Pr.858, Pr.868) Stall prevention operation selection becomes invalid. Function as stall prevention operation under V/F control and Advanced magnetic flux vector control. Set the current value at which stall prevention operation is started. Refer to page 105 for torque limit level. The stall operation level can be reduced when operating at a high speed above the rated frequency. Constant according to Pr: 22 Second stall prevention operation invalid	0 0	O O	0
20, 21 Adjustin Pr.49, Pr. 22 23	Refer to Pr. 7 and Pr. g the output torque .66, Pr.114, Pr.115, I Stall prevention operation level Stall prevention operation level compensation factor at double speed Second stall prevention	• (curre Pr.148, 0.1%	Pr.149 150% 9999	Pr.154, F 0 0.1 to 400% 0 to 200% 9999 0 0.1 to 220% 0 0.1 to 220% 0 0.01 to 400Hz	Pr.156, Pr.157, Pr.858, Pr.868) Stall prevention operation selection becomes invalid. Function as stall prevention operation under V/F control and Advanced magnetic flux vector control. Set the current value at which stall prevention operation is started. Refer to page 105 for torque limit level. The stall operation level can be reduced when operating at a high speed above the rated frequency. Constant according to Pr: 22 Second stall prevention operation level can be set. Second stall prevention operation invalid The stall prevention operation level can be set. Second stall prevention operation invalid Set the frequency at which stall prevention operation operation operation	0 0	O O	0
20, 21 Adjustin Pr.49, Pr. 22 23 48	Refer to Pr. 7 and Pr. g the output torque .66, Pr.114, Pr.115, I Stall prevention operation level Second stall prevention operation current Second stall prevention operation frequency	 (curre Pr.148, 0.1% 0.1% 0.1% 	Pr.149 150% 99999 150%	 Pr.154, F 0 0.1 to 400% 0 to 200% 9999 0 0.1 to 220% 0 0.01 to 200% 	Pr.156, Pr.157, Pr.858, Pr.868) Stall prevention operation selection becomes invalid. Function as stall prevention operation under V/F control and Advanced magnetic flux vector control. Set the current value at which stall prevention operation is started. Refer to page 105 for torque limit level. The stall operation level can be reduced when operating at a high speed above the rated frequency. Constant according to Pr: 22 Second stall prevention operation level can be set. Second stall prevention operation invalid The stall prevention operation level can be set. Second stall prevention operation invalid	Mat ○	O O	0
20, 21 Adjustin Pr.49, Pr. 22 23 48	Refer to Pr. 7 and Pr. g the output torque .66, Pr.114, Pr.115, I Stall prevention operation level Stall prevention operation level Stall prevention operation level compensation factor at double speed Second stall prevention operation current	 (curre Pr.148, 0.1% 0.1% 0.1% 	Pr.149 150% 99999 150%	Pr.154, F 0 0.1 to 400% 0 to 200% 9999 0 0.1 to 220% 0 0.1 to 220% 0 0.01 to 400Hz	Pr.156, Pr.157, Pr.858, Pr.868) Stall prevention operation selection becomes invalid. Function as stall prevention operation under V/F control and Advanced magnetic flux vector control. Set the current value at which stall prevention operation is started. Refer to page 105 for torque limit level. The stall operation level can be reduced when operating at a high speed above the rated frequency. Constant according to Pr: 22 Second stall prevention operation level can be set. Second stall prevention operation invalid The stall prevention operation level can be set. Second stall prevention operation invalid Set the frequency at which stall prevention operation operation operation invalid	Mat ○	O O	0 0
20, 21 Adjustin Pr.49, Pr. 22 23 48 49	Refer to Pr. 7 and Pr. g the output torque 66, Pr.114, Pr.115, I Stall prevention operation level Stall prevention operation factor at double speed Second stall prevention operation current Second stall prevention operation frequency Stall prevention operation reduction starting frequency Third stall prevention	 (curre Pr.148, 0.1% 0.1% 0.1% 0.1% 0.1% 	Pr.149 150% 99999 150% 0Hz	Pr.154, F 0 0.1 to 400% 0 to 200% 9999 0 0.1 to 220% 0 0.01 to 400Hz 9999	Pr.156, Pr.157, Pr.858, Pr.868)Stall prevention operation selection becomes invalid.Function as stall prevention operation under V/F control and Advanced magnetic flux vector control.Set the current value at which stall prevention operation is started.Refer to page 105 for torque limit level.The stall operation level can be reduced when operating at a high speed above the rated frequency.Constant according to $Pr. 22$ Second stall prevention operation invalidThe stall prevention operation invalidSet the frequency at which stall prevention operation of $Pr. 48$ is started.Pr.48 is valid when the RT signal is on.Set the frequency at which the stall operation level starts being reduced.Third stall prevention operation invalid	0 0	0 0 0	0
20, 21 Adjustin Pr.49, Pr. 22 23 48 49 66	Refer to Pr. 7 and Pr. g the output torque .66, Pr.114, Pr.115, I Stall prevention operation level Second stall prevention operation current Second stall prevention operation frequency Stall prevention operation reduction starting frequency Third stall	 (curre Pr.148, 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.11% 	Pr.149 150% 99999 150% 0Hz 60Hz	0 0 0.1 to 400% 0 to 200% 9999 0 0.1 to 220% 0 0.1 to 220% 0 0.1 to 220% 0 0.1 to 220% 0 0.01 to 400Hz 9999 0 to 400Hz 0	Pr.156, Pr.157, Pr.858, Pr.868) Stall prevention operation selection becomes invalid. Function as stall prevention operation under V/F control and Advanced magnetic flux vector control. Set the current value at which stall prevention operation is started. Refer to page 105 for torque limit level. The stall operation level can be reduced when operating at a high speed above the rated frequency. Constant according to Pr. 22 Second stall prevention operation invalid The stall prevention operation invalid Set the frequency at which stall prevention operation operation operation started. Second stall prevention operation invalid The stall operation operation invalid Set the frequency at which stall prevention operation of Pr. 48 is started. Pr.48 is valid when the RT signal is on. Set the frequency at which the stall operation level starts being reduced.		0 0 0	

 \square

Related parameters	Name	Incre- ments	Initial Value	Range	Descr	iption	Parameter copy	Parameter clear	All parameter
148	Stall prevention level at 0V input	0.1%	150%	0 to 220%	When "4" is set in <i>Pr. 868 (i</i> operation level can be char		0	0	(
149	Stall prevention level at 10V input	0.1%	200%	0 to 220%	input to terminal 1 (termina		0	0	(
				0	With output voltage reduction	duction to use output voltage reduction during stall			
				1	Without output voltage reduction	prevention operation or not.			
154	Voltage reduction selection during stall prevention operation	1	1	10	With output voltage reduction	Use these settings when the overvoltage protective function (E.OVD) activates	0	0	1
				11	Without output voltage reduction	during stall prevention operation in an application with large load inertia.			
156	Stall prevention operation selection	1	0	0 to 31, 100, 101	<i>Pr. 156</i> allows you to select prevention or not according deceleration status.		0	0	
157	OL signal output timer	0.1s	0s	0 to 25s	Set the output start time of stall prevention is activated		0	0	,
	unior			9999	stall prevention is activated. Without the OL signal output				
858	Terminal 4 function					at		<u> </u>	
858 868	Terminal 4 function assignment Terminal 1 function assignment	Refer to	page 144						
868	assignment Terminal 1 function assignment				Pr.803, Pr.810 to Pr.81			ensorie Vector PM	
868	assignment Terminal 1 function assignment					I 7, Pr.874) hit level under Real vector control, PM		Vector	
868 eed co	assignment Terminal 1 function assignment	nit leve	I (Pr.22 150/	2, Pr.157, I 0 to 400% 0 to 25s	Pr.803, Pr.810 to Pr.81 This functions as torque lin sensorless vector control, v sensorless vector control. Refer to <i>page 104</i> for stall p Set the output start time of torque limit is activated.	I 7, Pr.874) hit level under Real vector control, PM revention operation level. the OL signal output when		Vector	
868 eed co 22	assignment Terminal 1 function assignment ontrol — Torque lin Torque limit level OL signal output timer Constant power	nit level	1 (Pr.22 150/ 200% • 0s	2, Pr.157, I	Pr.803, Pr.810 to Pr.81 This functions as torque lin sensorless vector control, v sensorless vector control. Refer to <i>page 104</i> for stall p Set the output start time of	I 7, Pr.874) hit level under Real vector control, PM revention operation level. the OL signal output when ut	0	Vector P M O	
868 eed co 22 157	assignment Terminal 1 function assignment ontrol — Torque lin Torque limit level OL signal output timer	nit level	1 (Pr.22 150/ 200% *	2, Pr.157, I 0 to 400% 0 to 25s 9999	Pr.803, Pr.810 to Pr.81 This functions as torque lin sensorless vector control, sensorless vector control. Refer to <i>page 104</i> for stall p Set the output start time of torque limit is activated. Without the OL signal outp	I 7, Pr.874) hit level under Real vector control, PM revention operation level. the OL signal output when ut e current limit and control)	0	Vector P M O	
868 eed co 22 157 803 Sensorless	assignment Terminal 1 function assignment ontrol — Torque lin Torque limit level OL signal output timer Constant power range torque characteristic selection	nit level 0.1% 0.1s	1 (Pr.22 150/ 200% • 0s	2, Pr.157 , I 0 to 400% 0 to 25s 9999 0	Pr.803, Pr.810 to Pr.81 This functions as torque lin sensorless vector control, v sensorless vector control. Refer to <i>page 104</i> for stall p Set the output start time of torque limit is activated. Without the OL signal outp Constant output limit (torqu	I7, Pr.874) hit level under Real vector control, PM revention operation level. the OL signal output when ut e current limit and control) te limit and control)	0	Vector M M O O O O	
868 eed co 22 157 803 Sensorless	assignment Terminal 1 function assignment ontrol — Torque lin Torque limit level OL signal output timer Constant power range torque characteristic	nit level 0.1% 0.1s	1 (Pr.22 150/ 200% • 0s	2, Pr.157, I 0 to 400% 0 to 25s 9999 0 1	Pr.803, Pr.810 to Pr.81 This functions as torque lin sensorless vector control, v sensorless vector control. Refer to <i>page 104</i> for stall p Set the output start time of torque limit is activated. Without the OL signal outp Constant output limit (torqu Constant torque limit (torqu Internal torque limit	I 7, Pr.874) hit level under Real vector control, PM revention operation level. the OL signal output when ut e current limit and control) re limit and control) operation is performed.	0	Vector M M O O O O	
868 eed co 22 157 803 Sensorless Vector	assignment Terminal 1 function assignment ontrol — Torque lin Torque limit level OL signal output timer Constant power range torque characteristic selection Torque limit input	nit level 0.1% 0.1s 1	1 (Pr.22 150/ 200% - 0s 0	2, Pr.157 , I 0 to 400% 0 to 25s 9999 0 1 0	Pr.803, Pr.810 to Pr.81 This functions as torque lin sensorless vector control, v sensorless vector control. Refer to <i>page 104</i> for stall p Set the output start time of torque limit is activated. Without the OL signal outp Constant output limit (torqu Constant torque limit (torqu Internal torque limit Parameter-set torque limit External torque limit Torque limit based on the a	I 7, Pr.874) hit level under Real vector control, PM revention operation level. the OL signal output when ut e current limit and control) re limit and control) operation is performed.	0		
868 eed co 22 157 803 Sensorless Vector 810	assignment Terminal 1 function assignment ontrol — Torque lin Torque limit level OL signal output timer Constant power range torque characteristic selection Torque limit input method selection	nit level 0.1% 0.1s 1 1	l (Pr.22 150/ 200% - 0s 0	2, Pr.157, I 0 to 400% 0 to 25s 9999 0 1 1 0 1 0	Pr.803, Pr.810 to Pr.81 This functions as torque lin sensorless vector control, v sensorless vector control. Refer to <i>page 104</i> for stall p Set the output start time of torque limit is activated. Without the OL signal outp Constant output limit (torqu Constant torque limit (torqu Internal torque limit Parameter-set torque limit External torque limit Torque limit based on the a and 4 Running speed	I7, Pr.874) hit level under Real vector control, PM revention operation level. the OL signal output when ut e current limit and control) re limit and control) operation is performed. malog input to terminal 1 Torque limit increments	0		
868 eed co 22 157 803 Sensorless Vector	assignment Terminal 1 function assignment ontrol — Torque lin Torque limit level OL signal output timer Constant power range torque characteristic selection Torque limit input method selection	nit level 0.1% 0.1s 1	1 (Pr.22 150/ 200% - 0s 0	2, Pr.157 , I 0 to 400% 0 to 25s 9999 0 1 1 0 1 1 0 1	Pr.803, Pr.810 to Pr.81 This functions as torque lin sensorless vector control, v sensorless vector control. Refer to <i>page 104</i> for stall p Set the output start time of torque limit is activated. Without the OL signal outp Constant output limit (torqu Internal torque limit Parameter-set torque limit Parameter-set torque limit External torque limit Torque limit based on the <i>a</i> and 4 Running speed increments 1r/min 0.1r/min	I7, Pr.874) hit level under Real vector control, PM revention operation level. the OL signal output when ut e current limit and control) le limit and control) operation is performed. unalog input to terminal 1	0		
868 eed co 22 157 803 Sensorless Vector 810	assignment Terminal 1 function assignment ontrol — Torque lin Torque limit level OL signal output timer Constant power range torque characteristic selection Torque limit input method selection	nit level 0.1% 0.1s 1 1	l (Pr.22 150/ 200% - 0s 0	2, Pr.157, I 0 to 400% 0 to 25s 9999 0 1 1 0 1 0	Pr.803, Pr.810 to Pr.81 This functions as torque lin sensorless vector control, v sensorless vector control. Refer to <i>page 104</i> for stall p Set the output start time of torque limit is activated. Without the OL signal outp Constant output limit (torqu Internal torque limit Parameter-set torque limit Torque limit based on the a and 4 Running speed increments 1r/min	I7, Pr.874) hit level under Real vector control, PM revention operation level. the OL signal output when ut e current limit and control) re limit and control) operation is performed. malog input to terminal 1 Torque limit increments	0		

	meter						r	r	ter
	Related parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parametei clear	All parameter clear
	812	Torque limit level (regeneration)	0.1%	9999	0 to 400%	Set the torque limit level for forward rotation regeneration.	0	0	0
		(regeneration)			9999	Limit at the value of <i>Pr</i> : 22 or analog terminal			
	813	Torque limit level	0.1%	9999	0 to 400%	Set the torque limit level for reverse rotation driving.	0	0	0
		(3rd quadrant)			9999	Limit at the value of <i>Pr. 22</i> or analog terminal			
	814	Torque limit level (4th quadrant)	0.1%	9999	0 to 400%	Set the torque limit level for reverse rotation regeneration.	0	0	0
					9999	Limit at the value of <i>Pr. 22</i> or analog terminal			
	815	Torque limit level 2	0.1%	9999	0 to 400%	When the torque limit selection (TL) signal is on, the <i>Pr.</i> 815 value is a torque limit value regardless of <i>Pr.</i> 810.	0	0	0
					9999	The torque limit set to. Pr. 810 is active.			
	816	Torque limit level	0.1%	9999	0 to 400%	Set the torque limit value during acceleration.	0	0	0
	010	during acceleration	0.170	0000	9999	Same torque limit as at constant speed	Ŭ	0	
	817	Torque limit level	0.1%	9999	0 to 400%	Set the torque limit value during deceleration.	0	0	0
	•	during deceleration	0.170	0000	9999	Same torque limit as at constant speed	Ŭ	0	Ŭ
	874	OLT level setting	0.1%	150%	0 to 200%	This function can make an inverter trip if the torque limit is activated to stall the motor. Set the output torque at which an inverter trip is made in <i>Pr.</i> 874.	0	0	0
4 to 27 Refer to <i>Pr. 4 to Pr. 6</i> . equency setting with terminals (contact input) — Compens									
	-	y setting with tern etting inputs (Pr.28		contac	ct input) –	 Compensation of multi speed and 			
	-	etting inputs (Pr.28 Multi-speed input		contac	:t input) – 0	- Compensation of multi speed and Without compensation			
m e 2	ote se 28	Multi-speed input compensation selection	3)	0	0	Without compensation With compensation	0	0	0
2 2	ote se 28 elerat	Multi-speed input compensation selection	3) 1 ime/pat	0 tern ad	0 1 djustment Pr.143, Pi	Without compensation With compensation — Acceleration/deceleration patterns r.380 to Pr.383, Pr.516 to Pr.519)	0	0	0
2 2 000	ote se 28 elerat	Multi-speed input compensation selection	3) 1 ime/pat	0 tern ad	0 1 djustment Pr.143, Pr	Without compensation With compensation — Acceleration/deceleration patterns .380 to Pr.383, Pr.516 to Pr.519) Linear acceleration/ deceleration	0	0	0
2 2 	ote se 28 elerat	Multi-speed input compensation selection ion/deceleration t lash measures (Pr	3) 1 ime/pat	0 tern ad	0 1 djustment Pr.143, Pr 0 1	Without compensation With compensation — Acceleration/deceleration patterns .380 to Pr.383, Pr.516 to Pr.519) Linear acceleration/ deceleration S-pattern acceleration/deceleration A	0	0	0
2 2 cci	ote se 28 elerat	Multi-speed input compensation selection	3) 1 ime/pat 29, Pr.	0 tern ad	0 1 djustment Pr.143, Pr 0 1 2	Without compensation With compensation — Acceleration/deceleration patterns r.380 to Pr.383, Pr.516 to Pr.519) Linear acceleration/deceleration S-pattern acceleration/deceleration A S-pattern acceleration/deceleration B	0	0	
2 co d	ote se 28 elerat backl	Acceleration/	3) 1 ime/pat 29, Pr.	0 tern ac 140 to	0 1 djustment Pr.143, Pr 0 1 2 3	Without compensation With compensation — Acceleration/deceleration patterns .380 to Pr.383, Pr.516 to Pr.519) Linear acceleration/ deceleration S-pattern acceleration/deceleration A S-pattern acceleration/deceleration B Backlash measures			0
2 co d	ote se 28 elerat backl	Acceleration/ deceleration/ deceleration/ deceleration/ deceleration pattern	3) 1 ime/pat 29, Pr.	0 tern ac 140 to	0 1 djustment Pr.143, Pr 0 1 2 3 4	Without compensation With compensation Compension Compension Compension			
2 co	ote se 28 elerat backl	Acceleration/ deceleration/ deceleration pattern selection	3) 1 ime/pat 29, Pr.	0 tern ac 140 to	0 1 djustment Pr.143, Pr 0 1 2 3	Without compensation With compensation — Acceleration/deceleration patterns .380 to Pr.383, Pr.516 to Pr.519) Linear acceleration/ deceleration S-pattern acceleration/deceleration A S-pattern acceleration/deceleration B Backlash measures			
2 co	ote se 28 elerat backl	Acceleration/ deceleration/ deceleration/ deceleration/ deceleration pattern	3) 1 ime/pat 29, Pr.	0 tern ac 140 to	0 1 djustment Pr.143, Pr 0 1 2 3 4	Without compensation With compensation Compension Compension Compension			
2 2 ccc	elerat backl	Acceleration/ deceleration/ deceleration pattern selection Backlash acceleration	3) ime/pat : 29, Pr .	0 ttern ac 140 to 0	0 1 djustment Pr.143, Pr 0 1 2 3 4 5	Without compensation With compensation C — Acceleration/deceleration patterns 380 to Pr.383, Pr.516 to Pr.519) Linear acceleration/deceleration S-pattern acceleration/deceleration A S-pattern acceleration/deceleration B Backlash measures S-pattern acceleration/deceleration C S-pattern acceleration/deceleration D	0	0	0
2 CCC	28 elerat backl	Acceleration/ deceleration/ deceleration pattern selection Acceleration/ deceleration pattern selection Backlash acceleration stopping frequency Backlash acceleration	3) 1 ime/pat 29, Pr. 1 0.01Hz	0 tern ac 140 to 0 1Hz	0 1 djustment Pr.143, Pr 0 1 2 3 4 5 0 to 400Hz	Without compensation With compensation C - Acceleration/deceleration patterns 380 to Pr.383, Pr.516 to Pr.519) Linear acceleration/deceleration S-pattern acceleration/deceleration A S-pattern acceleration/deceleration B Backlash measures S-pattern acceleration/deceleration C S-pattern acceleration/deceleration D	0	0	0

/	
//	
<u> </u>	

_										
Pa	Related parameters	Name	Incre- ments	Initial Value	Range	Descrip	tion	Parameter copy	Parameter clear	All parameter clear
	380	Acceleration S- pattern 1	1%	0%	0 to 50%	Valid when S-pattern acceleration	ation/deceleration C (Pr.	0	0	0
	381	Deceleration S- pattern 1	1%	0%	0 to 50%	29 = 4) is set. Set the time taken for S-patte acceleration/deceleration to I		0	0	0
	382	Acceleration S- pattern 2	1%	0%	0 to 50%	to the acceleration/deceleration An acceleration/deceleration	on time (Pr. 7, Pr. 8, etc.)	0	0	0
	383	Deceleration S- pattern 2	1%	0%	0 to 50%	with the X20 signal.			0	0
	516	S-pattern time at a start of acceleration	0.1s	0.1s	0.1 to 2.5s			0	0	0
	517	S-pattern time at a completion of acceleration	0.1s	0.1s	0.1 to 2.5s	Valid when S-pattern accelers $29 = 5$) is set.	ation/deceleration D (Pr:	0	0	0
	518	S-pattern time at a start of deceleration	0.1s	0.1s	0.1 to 2.5s	Set the time taken for S-patted deceleration (S-pattern operation)		0	0	0
	519	S-pattern time at a completion of deceleration	0.1s	0.1s	0.1 to 2.5s			0	0	0
Мо	otor bra	ke and stop opera	ation —	Reger	neration u	nit selection (Pr.30, Pr	.70)			
					0	Built-in brake, brake unit (FR	-BU2 *1, FR-BU, BU)			
					1	High-duty brake resistor (FR-ABR), Brake unit (FR-BU2 *2, MT-BU5), Power regeneration converter (MT-RC)	A-ABR), BU5), er (MT-RC) TR-HC2),			
					2	High power factor converter (F Power regeneration common				
	30	Regenerative	1	0	10	Built-in brake unit, brake unit (FR-BU2 *1, FR-BU, BU)	DC feeding mode 1	0	0	0
		function selection			11	High-duty brake resistor (FR- ABR), brake unit (FR-BU2 *2, MT-BU5)	(operated by DC feeding only)			
					20	Built-in brake unit, brake unit (FR-BU2 *1, FR-BU, BU)	DC feeding mode 2			
					21	High-duty brake resistor (FR- ABR), brake unit (FR-BU2 *2, MT-BU5)	(operated by switching between AC and DC)			
	70	Special regenerative brake duty	0.1%	0%	0 to 30/ 0 to 10% *3	Set this parameter when a br regeneration converter is use	•	0	0	0
*1 *2 *3	Used in	combination with GZG, GI combination with MT-BR5 iffer according to the inve	j.		or lower/75K	or higher)				
Lir		5	•			hanic resonance poin	ts (frequency			
	-	.31 to Pr.36)			-					
	31	Frequency jump 1A	0.01Hz	9999	0 to 400Hz, 9999			0	0	0
	32	Frequency jump 1B	0.01Hz	9999	0 to 400Hz, 9999			0	0	0
	33	Frequency jump 2A	0.01Hz	9999	0 to 400Hz, 9999	1A to 1B, 2A to 2B, 3A to 3B 9999: Function invalid	is frequency jumps	0	0	0
	34	Frequency jump 2B	0.01Hz	9999	0 to 400Hz, 9999			0	0	0
	35	Frequency jump 3A	0.01Hz	9999	0 to 400Hz, 9999			0	0	0
	36	Frequency jump 3B	0.01Hz	9999	0 to 400Hz, 9999			0	0	0

Parameter Related parameters	Name	Incre- ments	Initial Value	Range	Descrip	otion	Parameter copy	Parameter clear	All parameter clear
	lisplay and monito r.505, Pr.811)	or outpu	ut sign	al — Spee	ed display and speed s	setting (Pr.37,			
37	Speed display	1	0	0 1 to 9998	Frequency display, setting Set the machine speed for <i>P</i>	Pr.505 Set frequency.	0	0	0
144	Speed setting switchover	1	4 *	0, 2, 4, 6, 8, 10, 102, 104, 106, 108, 110	Set the number of motor pole motor speed. A setting value is automatica on the <i>Pr:81</i> setting.	es when displaying the	0	0	0
505	Speed setting reference	0.01Hz	60Hz *	1 to 400Hz	Set the frequency that will be speed display.	e the basis of machine	0	0	0
					Running speed increments	Torque limit increments			
811	Easy gain tuning response level	1	0	0 1	1r/min 0.1r/min	0.1% increments	0	0	0
	setting			10	1r/min 0.1r/min	0.01% increments			
* Performing	IPM parameter initialization	on change	s the set						
41	116, Pr.865, Pr.870 Up-to-frequency sensitivity	0.1%	10%	0 to 100%	Set the level where the SU si	ignal turns on.	0	0	0
41		0.1%	10%	0 to 100%	Set the level where the SU si	ignal turns on.	0	0	0
42	Output frequency detection	0.01Hz	6Hz	0 to 400Hz	Set the frequency where the	() 0	0	0	0
43	Output frequency detection for	0.01Hz	9999	0 to 400Hz	Set the frequency where the in reverse rotation.	FU (FB) signal turns on	0	0	0
	reverse rotation			9999	Same as Pr: 42 setting				
50	Second output frequency detection	0.01Hz	30Hz	0 to 400Hz	Set the frequency where the on.	FU2 (FB2) signal turns	0	0	0
116	Third output frequency detection	0.01Hz	60Hz	0 to 400Hz	Set the frequency where the on.	FU3 (FB3) signal turns	0	0	0
865	Low speed detection	0.01Hz	1.5Hz	0 to 400Hz	Set the frequency where the	LS signal turns on.	0	0	0
870	Speed detection hysteresis	0.01Hz	0Hz *	0 to 5Hz	Set the hysteresis width for t	the detected frequency.	0	0	0
* Performing	IPM parameter initialization	on change	s the set	tings. (Refer t	0 page 74)				
44, 45	Refer to Pr. 7 and Pr.	8.							
46	Refer to Pr. 0.								
47	Refer to Pr. 3.								
48, 49	Refer to Pr. 22 and Pr	: 23.							
50	Refer to Pr. 41 to Pr. 4	43.							
51	Refer to Pr. 9.								

Parameter List

Parameter	Name	Incre-	Initial	Range	Description	Parameter copy	Parameter clear	parameter clear
Related parameters		ments	Value			Para	Para	All par
		•	•		nging DU/PU monitored items and Pr.170, Pr.171, Pr.268, Pr.563, Pr.564,			
r.867 Pr.		10 (1110	, , , , , , , , , , , , , , , , , , , ,	,				
52	DU/PU main display data selection	1	0	0, 5 to 14, 17 to 20, 22 to 25, 32 to 35, 39, 46, 50 to 57, 100	2 : Output current (<i>Pr. 54, Pr. 158</i>) 3 : Output voltage (<i>Pr. 54, Pr. 158</i>)	0	0	0
54	FM terminal function selection	1	1	1 to 3, 5 to 14, 17, 18, 21, 24, 32 to 34, 46, 50, 52, 53	 5 : Frequency setting value 6 : Running speed 7 : Motor torque 8 : Converter output voltage 9 : Regenerative brake duty 10 : Electronic thermal relay function load factor 11 : Output current peak value 	0	0	0
158	AM terminal function selection	1	1	1 to 3, 5 to 14, 17, 18, 21, 24, 32 to 34, 46, 50, 52, 53	 11. Output current peak value 12. Converter output voltage peak value 13. Input power 14. Output power 17. Load meter 18. Motor excitation current 19. Position pulse (<i>Pr. 52</i>) *1 20. Cumulative energization time (<i>Pr. 52</i>) 21. Reference voltage output (<i>Pr. 54, Pr. 158</i>) 22. Orientation status (<i>Pr. 52</i>) *1 23. Actual operation time (<i>Pr. 52</i>) 24. Motor load factor 25. Cumulative power (<i>Pr. 52</i>) 24. Motor load factor 25. Cumulative power (<i>Pr. 52</i>) 26. Torque command 27. Torque current command 28. Motor output 35. Feedback pulse *1 (<i>Pr. 52</i>) 39. SSCNET III communication status *2 46. Motor temperature *3 50. Power saving effect 51. Cumulative saving power (<i>Pr. 52</i>) 52. PID set point 53. PID measured value 54. PID deviation (<i>Pr. 52</i>) 55. Input/output terminal status (<i>Pr. 52</i>) 57. Option output terminal status (<i>Pr. 52</i>) 57. Option output terminal status (<i>Pr. 52</i>) 100. Set frequency is displayed during a stop and output frequency is displayed during operation (<i>Pr. 52</i>) 	0	0	0
2 Availabl 3 Availabl		mounted. nounted a 2r: 52 = "55	nd SFV5I		note the input terminal states and the lower the output term	iple -	ates.	٦
RL		MRS	ST		Center line is always ON	are on	P.RUN CT NET FWD	

 \bigcirc

Output terminal

IPF

DRIVING THE MOTOR

3

S						л.	r	ter
Related parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear
<u> </u>				0	Set "0" to clear the watt-hour meter monitor.			
170	Watt-hour meter clear	1	9999	10	Sets the maximum value for the monitoring from communication to 9999kWh.	0	×	0
				9999	Sets the maximum value for the monitoring from communication to 65535kWh.			
171	Operation hour meter clear	1	9999	0, 9999	Set "0" to clear the operation time monitor. Setting "9999" has no effect.	×	×	×
	Monitor decimal			0	Displays the monitor as integral value.			
268	digits selection	1	9999	1	Displays the monitor in increments of 0.1.	0	0	0
	5			9999	No fixed decimal position			
563	Energization time carrying-over times	1	0	(0 to 65535)	The numbers of cumulative energization time monitor exceeded 65535h is displayed. Reading only	×	×	×
564	Operating time carrying-over times	1	0	(0 to 65535)	The numbers of operation time monitor exceeded 65535h is displayed. Reading only	×	×	×
867	AM output filter	0.01s	0.01s	0 to 5s	Set the output filter of terminal AM.	0	0	0
	Cumulative power			0 to 4	Set the number of times to shift the cumulative power monitor digit. Clamps the monitor value at maximum.			
891	monitor digit shifted times	1	9999	9999	No shift Clears the monitor value when it exceeds the maximum value.	0	0	0
lonitor c	lisplay and monito	r outpi	ut sian	al — Refe	rence for monitor value output from ter-		•	
	or AM (Pr.55, Pr.5	-	-					
55	Frequency monitoring reference	-	60Hz *1	0 to 400Hz	Set the full-scale value to output the output frequency monitor value to terminal FM and AM.	0	0	0
56	Current monitoring reference	0.01/ 0.1A *2	Inverter rated current *1	0 to 500/ 0 to 3600A *2	Set the full-scale value to output the output current monitor value to terminal FM and AM.	0	0	0
56 866 Magnetic flux Sensoriess Vector	Current monitoring reference		rated current *1	0 to 3600A	Set the full-scale value to output the output current	0	0	0
866 (Magnetic flux) Sensorless Vector P M Perform	Current monitoring reference Torque monitoring reference	0.1A *2 0.1%	rated current *1 150% nges the s	0 to 3600A *2 0 to 400% settings. (Refe	Set the full-scale value to output the output current monitor value to terminal FM and AM. Set the full-scale value to output the torque monitor value to terminal FM and AM.			
866 Magnetic flux Sensorless Vector P M Perform 2 The incr	Current monitoring reference Torque monitoring reference	0.1A *2 0.1% ation chai	rated current *1 150% nges the s	0 to 3600A *2 0 to 400% settings. (Refe	Set the full-scale value to output the output current monitor value to terminal FM and AM. Set the full-scale value to output the torque monitor value to terminal FM and AM. er to <i>page 74</i>) apacity. (55K or lower/75K or higher)			
866 Magnetic flux Sensorless Vector PM Perform 2 The incr Dperation	Current monitoring reference Torque monitoring reference ing IPM parameter initializ rements and setting range	0.1A *2 0.1% ation char differ acc	rated current *1 150% nges the s ording to re and	0 to 3600A *2 0 to 400% settings. (Refe the inverter ca instantan	Set the full-scale value to output the output current monitor value to terminal FM and AM. Set the full-scale value to output the torque monitor value to terminal FM and AM.			
866 Magnetic flux Sensoriess Vector P M Perform The incr	Current monitoring reference Torque monitoring reference ing IPM parameter initializ rements and setting range	0.1A *2 0.1% ation char differ acc	rated current *1 150% nges the s ording to re and	0 to 3600A *2 0 to 400% settings. (Refe the inverter ca instantan	Set the full-scale value to output the output current monitor value to terminal FM and AM. Set the full-scale value to output the torque monitor value to terminal FM and AM. er to <i>page 74</i>) apacity. (55K or lower/75K or higher) eous power failure — Automatic restart			
866 Magnetic flux Sensorless Vector PM Perform The incr	Current monitoring reference Torque monitoring reference ing IPM parameter initializ rements and setting range	0.1A *2 0.1% ation char differ acc	rated current *1 150% nges the s ording to re and	0 to 3600A *2 0 to 400% settings. (Refe the inverter ca instantan	Set the full-scale value to output the output current monitor value to terminal FM and AM. Set the full-scale value to output the torque monitor value to terminal FM and AM. er to <i>page 74</i>) apacity. (55K or lower/75K or higher) eous power failure — Automatic restart 7, Pr.58, Pr.162 to Pr.165, Pr.299, Pr.611)			
866 Magnetic flux Sensorless Vector Perform The incr	Current monitoring reference Torque monitoring reference ing IPM parameter initializ rements and setting range n selection at powe antaneous power f Restart coasting	0.1A *2 0.1% ation chard differ acc er failu failure/f	rated current *1 150% nges the s ording to re and flying s	0 to 3600A *2 0 to 400% settings. (Refe the inverter ca instantan start (Pr.57	Set the full-scale value to output the output current monitor value to terminal FM and AM. Set the full-scale value to output the torque monitor value to terminal FM and AM. er to page 74) apacity. (55K or lower/75K or higher) eous power failure — Automatic restart 7, Pr.58, Pr.162 to Pr.165, Pr.299, Pr.611) Induction motor control PM sensorless vector control The coasting time is as follows: 1.5K or lower 0.5s, 2.2K to 7.5K 1.0s, 11K to 55K 3.0s,	0	0	0
866 Magnetic flux Sensorless Vector Perform Perform The incr	Current monitoring reference Torque monitoring reference ing IPM parameter initializ rements and setting range n selection at powe antaneous power f Restart coasting	0.1A *2 0.1% ation chard differ acc er failu failure/f	rated current *1 150% nges the s ording to re and flying s	0 to 3600A *2 0 to 400% settings. (Refe the inverter ca instantan start (Pr.57 0 0.1 to 5s/	Set the full-scale value to output the output current monitor value to terminal FM and AM. Set the full-scale value to output the torque monitor value to terminal FM and AM. Set the full-scale value to output the torque monitor value to terminal FM and AM. er to page 74) apacity. (55K or lower/75K or higher) eous power failure — Automatic restart 7, Pr.58, Pr.162 to Pr.165, Pr.299, Pr.611) Induction motor control PM sensorless vector control The coasting time is as follows: 1.5K or lower 0.5s, 2.2K to 7.5K 1.0s, 11K to 55K 3.0s, 75K or higher 5.0s Set the waiting time for inverter-triggered restart after	0	0	0
866 Magnetic flux Sensorless Vector Perform 2 The incr Operation fter insta	Current monitoring reference Torque monitoring reference ing IPM parameter initializ rements and setting range n selection at powe antaneous power f Restart coasting	0.1A *2 0.1% ation chard differ acc er failu failure/f	rated current *1 150% nges the s ording to re and flying s	0 to 3600A *2 0 to 400% settings. (Refe the inverter ca instantan start (Pr.57 0 0 0.1 to 5s/ 0.1 to 30s *	Set the full-scale value to output the output current monitor value to terminal FM and AM. Set the full-scale value to output the torque monitor value to terminal FM and AM. Set the full-scale value to output the torque monitor value to terminal FM and AM. er to page 74) apacity. (55K or lower/75K or higher) eous power failure — Automatic restart 7, Pr.58, Pr.162 to Pr.165, Pr.299, Pr.611) Induction motor control PM sensorless vector control The coasting time is as follows: 1.5K or lower 0.5s, 2.2K to 7.5K 1.0s, 11K to 55K 3.0s, 75K or higher 5.0s Set the waiting time for inverter-triggered restart after an instantaneous power failure.	0	0	0

	Related parameters	Name	Incre- ments	Initial Value	Range	Descrip	otion	Parameter copy	Parameter clear	All parameter clear
					0	Frequency search only perfo	ormed at the first start			
		Automatia restart			1	Reduced voltage start only p (no frequency search) *1	erformed at the first start			
		Automatic restart			2	Encoder detection frequency	/ search	_	-	
	162	power failure	1	0	10	Frequency search at every s	start	0	0	0
		selection			11	Reduced voltage system at e search) *1	every start (no frequency			
					12	Encoder detection frequency	y search at every start			
	163 V/F Magnetic flux	First cushion time for restart	0.1s	0s	0 to 20s	Set a voltage starting time at restart. Consider according to the magnitude of load (inertia moment/torque).		0	0	0
	164 V/F Magnetic flux	First cushion voltage for restart	0.1%	0%	0 to 100%			0	0	0
	165 V/F Magnetic flux	Stall prevention operation level for restart	0.1%	150%	0 to 220%	Consider the rated inverter of the stall prevention operation operation.		0	0	0
					0	Without rotation direction de	tection			
	299	Rotation direction			1	With rotation direction detec	tion		-	
	Magnetic flux Sensorless	detection selection at restarting	1	0	9999	When Pr : 78 = "0", the rotation When Pr : 78 = "1", "2", the rotation detected.		0	0	0
	644	Acceleration time at	0.15	E /4 Ea + a	0 to 3600s	Set the acceleration time to deceleration reference frequence		0	0	
	611	a restart	0.1s	5/15s *2	9999	Acceleration time for restart acceleration time (e.g. <i>Pr.</i> 7)		0	0	0
*1 *2	•	uency search is available al value according to the i	•					1		
_		initial value according to the inverter capacity (55K or lower/75K or higher)		contac	t input) –	- Remote setting func	tion (Pr.59)			
Fr	equenc	y setting with tern	ninais (oomut						
Fr	equenc	y setting with tern	ninais (Joontac		RH, RM, RL signal function	Frequency setting storage function			
Fr	equenc	y setting with tern		oontac	0					
Fr		Remote function			0	function				0
Fr	equenc 59			0	-	function Multi-speed setting	storage function	0	0	0
Fr		Remote function			1	function Multi-speed setting Remote setting	storage function 	0	0	0
	59	Remote function	1	0	1 2 3	function Multi-speed setting Remote setting Remote setting Remote setting	storage function — Yes No No (Turning STF/STR off clears remotely- set		0	
	59 nergy sa	Remote function selection aving operation — Energy saving	1 • Energy	0 y savir	1 2 3	function Multi-speed setting Remote setting Remote setting Remote setting	storage function — Yes No No (Turning STF/STR off clears remotely- set		V/F	
	59	Remote function selection	1	0	1 2 3 og control	function Multi-speed setting Remote setting Remote setting Remote setting Selection (Pr.60)	storage function 			
Er	59 hergy sa 60	Remote function selection aving operation — Energy saving control selection	1 Energy	0 y savir 0	1 2 3 og control 0 4 djustment	function Multi-speed setting Remote setting Remote setting Remote setting Selection (Pr.60) Normal operation mode	storage function Yes No No (Turning STF/STR off clears remotely- set frequency.) de	. 0 . 0 . Ma . Se	V/F	O Flux SS
Er	59 hergy sa 60	Remote function selection aving operation — Energy saving control selection	1 Energy	0 y savir 0	1 2 3 ig control 0 4	function Multi-speed setting Remote setting Remote setting Remote setting Selection (Pr.60) Normal operation mode Energy saving operation mode	storage function 	. 0 . 0 . Ma . Se	V/F O V/F gnetic f	O Flux SS

 \mathbb{Z}

Parameter Barameters	Name	Incre- ments	Initial Value	Range	Descrip	otion	Parameter copy	Parameter clear	All parameter clear
				0 to 220%	Setting value is a limit value	Shortest acceleration/ deceleration mode			
62	Reference value at	0.1%	9999	010220%	Setting value is an optimum value	Optimum acceleration/ deceleration mode	0	0	0
02	acceleration	0.170	9999	9999	150% is a limit value	Shortest acceleration/ deceleration mode			U
					100% is an optimum value	Optimum acceleration/ deceleration mode			
				0 to 220%	Setting value is a limit value	Shortest acceleration/ deceleration mode			
63	Reference value at	0.1%	9999		Setting value is an optimum value	Optimum acceleration/ deceleration mode	0	0	0
	deceleration			9999	150% is a limit value	Shortest acceleration/ deceleration mode	_		
					100% is an optimum value	Optimum acceleration/ deceleration mode			
64	Starting frequency	0.01Hz	9999	0 to 10Hz	0 to 10Hz are starting freque	ency	0	0	0
	for elevator mode			9999	2Hz is starting frequency				
				0	Normal operation mode				
				1	Shortest acceleration/	Without brake			
				11	deceleration mode	With brake			
				3	Optimum acceleration/decelerati	eration mode			
292	Automatic			5	Elevator mode 1				
Magnetic flux	acceleration/	1	0	6	Elevator mode 2		0	0	0
Sensorless Vector	deceleration			7	Brake sequence mode 1	Disabled when the second or third function			
				8	Brake sequence mode 2	is selected			
				17 18	Brake sequence mode 1 Brake sequence mode 2	Enabled even if the second or third function is selected			
293	Acceleration/			0	Calculate acceleration/decel acceleration and deceleratio optimum acceleration/decele	eration time of both n for the shortest and			
(Magnetic flux) Sensorless Vector	deceleration separate selection	1	0	1	Calculate only acceleration t optimum acceleration/decele	eration mode	0	0	0
				2	Calculate only deceleration t optimum acceleration/decele	eration mode			
Operation	n setting at fault o	ccurrer	nce — I	Retry at fa	ault occurrence (Pr.65,	Pr.67 to Pr.69)			
65	Retry selection	1	0	0 to 5	A fault for retry can be selected	ed.	0	0	0
				0	No retry function				
67	Number of retries at	1	0	1 to 10	Set the number of retries at fa output is not provided during		0	0	0
	fault occurrence			101 to 110	Set the number of retries at fa setting value minus 100 is the fault output is provided during	e number of retries.) A g retry operation.			
68	Retry waiting time	0.1s	1s	0 to 10s	Set the waiting time from wh occurs until a retry is made.	en an inverter fault	0	0	0
69	Retry count display erase	1	0	0	Clear the number of restarts	succeeded by retry.	0	0	0
66	Refer to Pr. 22 and Pr	r. 23.							
67 to 69	Refer to Pr. 65.								
70	Refer to <i>Pr. 30</i> .								
10									

 \square

election a	ind protection of	a moto	or — M	otor select 0 1 2 20 30 40 50 330 *2	tion (applied motor) (Thermal characteristics of a s Thermal characteristics of th torque motor Thermal characteristic of sta 5 points V/F Mitsubishi standard motor (SF Thermal characteristics of th motor SF-V5RU (1500r/min) Thermal characteristic of Mit motor (SF-HR) Thermal characteristic of Mit motor (SF-HR)	e Mitsubishi constant- ndard motor Adjustable -JR 4P 1.5kW or lower) e Mitsubishi vector series)			
				1 2 20 30 40 50	Thermal characteristics of th torque motor Thermal characteristic of sta 5 points V/F Mitsubishi standard motor (SF Thermal characteristics of th motor SF-V5RU (1500r/min Thermal characteristic of Mit motor (SF-HR) Thermal characteristic of Mit	e Mitsubishi constant- ndard motor Adjustable -JR 4P 1.5kW or lower) e Mitsubishi vector series)			
				2 20 30 40 50	torque motor Thermal characteristic of sta 5 points V/F Mitsubishi standard motor (SF Thermal characteristics of th motor SF-V5RU (1500r/min Thermal characteristic of Mit motor (SF-HR) Thermal characteristic of Mit	ndard motor Adjustable F-JR 4P 1.5kW or lower) e Mitsubishi vector series)			
				20 30 40 50	5 points V/F Mitsubishi standard motor (SF Thermal characteristics of th motor SF-V5RU (1500r/min Thermal characteristic of Mit motor (SF-HR) Thermal characteristic of Mit	-JR 4P 1.5kW or lower) e Mitsubishi vector series)			
				30 40 50	Mitsubishi standard motor (SF Thermal characteristics of th motor SF-V5RU (1500r/min Thermal characteristic of Mit motor (SF-HR) Thermal characteristic of Mit	e Mitsubishi vector series)			
				40 50	motor SF-V5RU (1500r/min Thermal characteristic of Mit motor (SF-HR) Thermal characteristic of Mit	series)			
				40 50	Thermal characteristic of Mit motor (SF-HR) Thermal characteristic of Mit	,			
				50	Thermal characteristic of Mit	c <i>i</i>			
						subishi constant-torque			
				330 *2	1514				
					IPM motor MM-CF				
				3	Standard motor	-			
				13	Constant-torque motor Mitsubishi vector motor SF-V5RU (except for 1500 r/min series)				
				23	Mitsubishi standard motor (SF- JR 4P 1.5kW or lower)				
				33	Mitsubishi vector motor SF-V5RU (1500r/min series), SF-THY	Select "offline auto tuning setting"			
				43	Mitsubishi high efficiency motor (SF-HR)				
				53	Mitsubishi constant-torque motor (SF-HRCA)				
71 A	Applied motor	1	0 *1	333 *2	IPM motor MM-CF		0	0	
	ipplied meter	·	•	8093	IPM motor (other than MM-CF)		Ū	Ū	
				4	Standard motor				
				14	Constant-torque motor Mitsubishi vector motor SF-V5RU (except for 1500 r/min series)				
				24	Mitsubishi standard motor (SF- JR 4P 1.5kW or lower)				
				34	Mitsubishi vector motor SF-V5RU (1500r/min series), SF-THY	Auto tuning data can be read, changed, and set.			
				44	Mitsubishi high efficiency motor (SF-HR)				
				54	Mitsubishi constant-torque motor (SF-HRCA)	1			1
				334 *2	IPM motor MM-CF	1			1
				8094	IPM motor (other than MM-CF)				
				5	Standard motor	Star connection			
				15	Constant-torque motor	Direct input of motor constants is enabled			
				6	Standard motor	Delta connection			
				16	Constant-torque motor	Direct input of motor constants is enabled			
				7	Standard motor	Star connection			
				17	Constant-torque motor	Motor constants direct input +Offline auto tuning			
				8	Standard motor	Delta connection			1
				18	Constant-torque motor	Motor constants direct input +Offline auto tuning			
450	Second applied notor	1	9999	0 to 8, 13 to 18, 20, 23, 24, 30, 33, 34, 40, 43, 44, 50, 53, 54	Set when using the second r (same specifications as <i>Pr. 7</i>		0	0	
				9999	Second motor is invalid				1

3

Related parameters	Name	Incre- ments	Initial Value	Range	Descrip	otion	Parameter copy	Parameter clear	All parameter
	n of the motor nois and Soft-PWM sele			•	oise and leakage curr	ent — Carrier fre-			
		, 	,	,	PWM carrier frequency can	be changed.			
					The setting displayed is in [kHz]. Note that 0 indicates 0.7kHz, 15 indicates 14.5kHz, and 25 indicates 2.5kHz. (The setting value "25" is for the sine wave filter.)	V/F control, Advanced magnetic flux vector control			
72	PWM frequency selection	1	2	0 to 15/ 0 to 6, 25 *1	0 to 5: 2kHz 6 to 9: 6kHz, 10 to 13: 10kHz 14, 15: 14kHz	Real sensorless vector control, vector control, PM sensorless vector control (current synchronization operation)	0	0	C
					0 to 9: 6kHz, 10 to 13: 10kHz 14, 15: 14kHz	PM sensorless vector control (high frequency superposition control)			
240	Soft-PWM operation selection	1	1 *2	0	Soft-PWM invalid When <i>Pr</i> : <i>72</i> = "0 to 5" ("0 to - Soft-PWM is valid. Invalid during PM sensorle frequency superposition co	ss vector control (high	0	0	C
-		ng by a	nalog i	input — A	nalog input selection,	override function,			
alog in			-	-	nalog input selection, Pr.252, Pr.253, Pr.267)				1
73			-	-		cifications of terminal 2) and input specifications £10V). the voltage input 0V), turn OFF (initial put switch 2. To change 0mA), turn ON the 2.	0	×	(
	Analog input	(Pr.73,	Pr.242	2, Pr.243, 1	Pr.252, Pr.253, Pr.267) You can select the input spe (0 to 5V, 0 to 10V, 0 to 20mA) of terminal 1 (0 to ±5V, 0 to To change the terminal 2 to specification (0 to 5V/ 0 to 1 status) the voltage/current in it to the current input (0 to 20 voltage/current input switch	cifications of terminal 2) and input specifications £10V). the voltage input DV), turn OFF (initial put switch 2. To change DmA), turn ON the 2. ration can be selected.	0	×	
73	Analog input selection	(Pr.73 ,	, Pr.24 ;	2, Pr.243, 1 0 to 7, 10 to 17	Pr.252, Pr.253, Pr.267) You can select the input spe (0 to 5V, 0 to 10V, 0 to 20 mA) of terminal 1 (0 to $\pm 5V, 0$ to $\pm 5V$ to {\pm 5V to $\pm 5V$ to $\pm 5V$ to {\pm 5V to $\pm 5V$ to {\pm 5V to $\pm 5V$ to {\pm 5V to {\pm 5V} to {\pm 5V	cifications of terminal 2) and input specifications £10V). the voltage input DV), turn OFF (initial put switch 2. To change DmA), turn ON the 2. ration can be selected. ensation amount when			(
242	Analog input selection Terminal 1 added compensation amount (terminal 2) Terminal 1 added compensation	(Pr.73 , 1 0.1%	, Pr.24 ; 1 100%	2, Pr.243, 0 to 7, 10 to 17 0 to 100%	Pr.252, Pr.253, Pr.267) You can select the input spe (0 to 5V, 0 to 10V, 0 to 20mA) of terminal 1 (0 to ±5V, 0 to To change the terminal 2 to specification (0 to 5V/ 0 to 10 status) the voltage/current in it to the current input (0 to 20 voltage/current input switch Override and reversible open Set the ratio of added competerminal 2 is the main speed Set the ratio of added competerminal 2 is the main speed	cifications of terminal 2) and input specifications L10V). the voltage input DV), turn OFF (initial put switch 2. To change DmA), turn ON the 2. ration can be selected. ensation amount when	0	0	(
73 242 243	Analog input selection Terminal 1 added compensation amount (terminal 2) Terminal 1 added compensation amount (terminal 4)	(Pr.73 , 1 0.1% 0.1%	, Pr.24 ; 1 100% 75%	2, Pr.243, 1 0 to 7, 10 to 17 0 to 100% 0 to 100%	Pr.252, Pr.253, Pr.267) You can select the input spe (0 to 5V, 0 to 10V, 0 to 20mA) of terminal 1 (0 to ±5V, 0 to To change the terminal 2 to specification (0 to 5V/ 0 to 11 status) the voltage/current in it to the current input (0 to 20 voltage/current input switch Override and reversible open Set the ratio of added competerminal 2 is the main speed Set the ratio of added competerminal 4 is the main speed	cifications of terminal 2) and input specifications ±10V). the voltage input DV), turn OFF (initial put switch 2. To change DmA), turn ON the 2. ration can be selected. ensation amount when tion value of override	0	0	(
73 242 243 252	Analog input selection Terminal 1 added compensation amount (terminal 2) Terminal 1 added compensation amount (terminal 4) Override bias	(Pr.73 , 1 0.1% 0.1%	Pr.242	2, Pr.243, I 0 to 7, 10 to 17 0 to 100% 0 to 100% 0 to 200%	Pr.252, Pr.253, Pr.267) You can select the input spe (0 to 5V, 0 to 10V, 0 to 20mA) of terminal 1 (0 to ±5V, 0 to ± To change the terminal 2 to 1 specification (0 to 5V/ 0 to 10 status) the voltage/current in it to the current input switch ± Override and reversible open Set the ratio of added competerminal 2 is the main speed Set the ratio of added competerminal 4 is the main speed Set the bias side compensation. Set the gain side compensation.	cifications of terminal 2) and input specifications (10V). the voltage input DV), turn OFF (initial put switch 2. To change DmA), turn ON the 2. ration can be selected. ensation amount when	0 0	0 0	(

 \square

Parameter Kelated barameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear
Frequenc	y and torque settin	ng by a	nalog	input — R	esponse level of analog input and noise	1		•
eliminatio	on (Pr.74, Pr.822, P	r.826, F	Pr.832,	Pr.836, P	r.849)			
74	Input filter time constant	1	1	0 to 8	The primary delay filter time constant for the analog input can be set. A larger setting results in slower response.	0	0	0
822 Sensorless Vector	Speed setting filter 1	0.001s	9999	0 to 5s, 9999	Set the time constant of the primary delay filter relative to the external speed command (analog input command).	0	0	0
826 Sensorless Vector	Torque setting filter 1	0.001s	9999	0 to 5s, 9999	Set the time constant of the primary delay filter relative to the external torque command (analog input command).	0	0	0
832 Sensorless Vector	Speed setting filter 2	0.001s	9999	0 to 5s, 9999	Second function of <i>Pr. 822</i> (valid when the RT terminal is on)	0	0	0
836 Sensorless Vector	Torque setting filter 2	0.001s	9999	0 to 5s, 9999	Second function of <i>Pr. 826</i> (valid when the RT terminal is on)	0	0	0
849	Analog input offset adjustment	0.1%	100%	0 to 200%	This function provides speed command by analog input (terminal 2) with offset and avoids frequency command to be given due to noise under 0 speed command.	0	0	0
•	•	-		setting re	striction — Reset selection and			
75	cted PU detection Reset selection/ disconnected PU detection/PU stop selection	(Pr.75)	14	0 to 3, 14 to 17	You can select the reset input acceptance, disconnected PU (FR-DU07/FR-PU07/FR-PU04) connector detection function and PU stop function. For the initial value, reset always enabled, without disconnected PU detection, and with PU stop function are set.	0	×	×
Operatior	n setting at fault o	ccurren	nce — (Output fu	nction of fault code (Pr.76)			
	Fault code output			0	Without fault code output			
76	selection	1	0	1	With fault code output	0	0	0
				2	Fault code output at fault occurrence only			
Misopera rewrite (P	-	id para	meter	setting re	striction — Prevention of parameter			
				0	Write is enabled only during a stop			
77	Parameter write	1	0	1	Parameter write is disabled.	0	0	0
	selection		-	2	Parameter write is enabled in any operation mode regardless of operating status.	_		-
Misopera	tion prevention an	d para	meter	setting re	striction — Reverse motor rotation			
preventio	on (Pr.78)							
0 Both forward and reverse rotations allowed								
78	Reverse rotation				Reverse rotation disallowed	0	0	0
	prevention selection	evention selection 2 Forward rotation disallowed				1		
				1	•	۱		۱

Related parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter
election	-				e — Operation mode selection (Pr.79) e — Operation mode at power-ON (Pr.79	,		
79 ©	Operation mode selection	1	0	0 1 2 3	External/PU switchover mode Fixed to PU operation mode Fixed to External operation mode External/PU combined operation mode 1	0	0	С
				4 6 7 0	External/PU combined operation mode 2 Switchover mode External operation mode (PU operation interlock) As set in <i>Pr. 79</i> .	_		
	Communication			1, 2	Started in the Network operation mode. When the setting is "2", it will resume the pre- instantaneous power failure operation mode after a instantaneous power failure occurs.			
340	startup mode selection	1	0		Started in the Network operation mode. Operation mode can be changed between the PU operation mode and Network operation mode from	0	0*	0
				10, 12	the operation panel. When the setting is "12", it will resume the pre- instantaneous power failure operation mode after a instantaneous power failure occurs.	n		
ontrol n r.569, Pı		of cont	rol met		When the setting is "12", it will resume the pre- instantaneous power failure operation mode after a	Ma	gnetic ensorie Vecto PN	ess r
		0.01/ 0.1kW	9999 *2	0.4 to 55/ 0 to 3600kW	 When the setting is "12", it will resume the pre- instantaneous power failure operation mode after a instantaneous power failure occurs. 0, Pr.81, Pr.89, Pr.451, Pr.453, Pr.454, Set the applied motor capacity. 	Ma	ensorle Vecto	ess r
r.569, Pı	r.800)	0.01/		0.4 to 55/ 0 to 3600kW *1 9999	 When the setting is "12", it will resume the pre- instantaneous power failure operation mode after a instantaneous power failure occurs. 0, Pr.81, Pr.89, Pr.451, Pr.453, Pr.454, Set the applied motor capacity. V/F control is performed 		ensorie Vecto P N	r I
r.569, Pı	r.800)	0.01/ 0.1kW		0.4 to 55/ 0 to 3600kW *1 9999 2, 4, 6, 8, 10 12, 14, 16, 18, 20	When the setting is "12", it will resume the pre- instantaneous power failure operation mode after a instantaneous power failure occurs. 0, Pr.81, Pr.89, Pr.451, Pr.453, Pr.454, Set the applied motor capacity. V/F control is performed Set the number of motor poles. X18 signal-ON:V/F control Set 10 + number of motor poles.		ensorie Vecto P N	
r. 569, Pı 80	R.800) Motor capacity Number of motor poles Speed control gain (Advanced magnetic flux	0.01/ 0.1kW *1	9999 *2	0.4 to 55/ 0 to 3600kW *1 9999 2, 4, 6, 8, 10 12, 14, 16, 18, 20 9999 0 to 200%	When the setting is "12", it will resume the pre- instantaneous power failure operation mode after a instantaneous power failure occurs. 0, Pr.81, Pr.89, Pr.451, Pr.453, Pr.454, Set the applied motor capacity. V/F control is performed Set the number of motor poles. X18 signal-ON:V/F control Set 10 + number of motor poles. V/F control is performed Motor speed fluctuation due to load fluctuation is adjusted during Advanced magnetic flux vector control. 100% is a referenced value.		Vecto	
r. 569, Pi 80 81 89	r.800) Motor capacity Number of motor poles Speed control gain (Advanced	0.01/ 0.1kW *1 1	9999 *2 9999 *2	0.4 to 55/ 0 to 3600kW *1 9999 2, 4, 6, 8, 10 12, 14, 16, 18, 20 9999	When the setting is "12", it will resume the pre- instantaneous power failure operation mode after a instantaneous power failure occurs. 0, Pr.81, Pr.89, Pr.451, Pr.453, Pr.454, Set the applied motor capacity. V/F control is performed Set the number of motor poles. X18 signal-ON:V/F control Set 10 + number of motor poles. V/F control is performed Motor speed fluctuation due to load fluctuation is adjusted during Advanced magnetic flux vector control.			
r.569, Pr 80 81 89 Magnetic flux 451	R.800) Motor capacity Number of motor poles Speed control gain (Advanced magnetic flux vector) Second motor	0.01/ 0.1kW *1 1 0.1%	9999 *2 99999 *2 99999	0.4 to 55/ 0 to 3600kW *1 9999 2, 4, 6, 8, 10 12, 14, 16, 18, 20 9999 0 to 200% 9999	When the setting is "12", it will resume the pre- instantaneous power failure operation mode after a instantaneous power failure occurs. 0, Pr.81, Pr.89, Pr.451, Pr.453, Pr.454, Set the applied motor capacity. V/F control is performed Set the number of motor poles. X18 signal-ON:V/F control Set 10 + number of motor poles. V/F control is performed Motor speed fluctuation due to load fluctuation is adjusted during Advanced magnetic flux vector control. 100% is a referenced value. Gain matching with the motor set in <i>Pr.71</i> . Select the method of controlling the second motor.		P V O O	

=	

Parameter							er.	Ŀ	ter
Related parameters	Name	Incre- ments	Initial Value	Range	Descri	ption	Parameter copy	Parametei clear	All parameter clear
569 (Magnetic flux)	speed control gain 0.1% 99999				Second motor speed fluctua fluctuation is adjusted durin vector control. 100% is a referenced value	g Advanced magnetic flux	0	×	0
				9999	Gain matching with the mot	or set in Pr:450.			
				0	Speed control				
				1	Torque control				
				2	MC signal-ON: torque MC signal-OFF: speed	Vector control			
				3	Position control	(FR-A7AP/FR-A7AL)			
				4	MC signal-ON: position MC signal-OFF: speed				
				5	MC signal-ON: torque MC signal-OFF: position		0		
800	Control method selection	1	20	9	Vector control / PM sensorl operation Test operation of vector cor vector control (speed contro without connecting a motor.	ntrol / PM sensorless bl) can be performed		0	0
				10	Speed control				
				11	Torque control	Real sensorless vector			
				12	MC signal-ON: torque MC signal-OFF: speed	- control			
				13	Position control	PM sensorless vector			
				14	MC signal-ON: position MC signal-OFF: speed	control			
				20	V/F Control (Advanced mag	gnetic flux vector control)			
	-			ffline auto	V/F Control (Advanced mag tuning (Pr.82 to Pr.8 Pr.724, Pr.725, Pr.859	4, Pr.90 to Pr.94,	Se	gnetic Insorie Vector PM	ss
82	684, Pr.706, Pr.707	7, Pr.711		ffline auto	o tuning (Pr.82 to Pr.8	4, Pr.90 to Pr.94,))	Se	ensorle Vector	ss
r.96, Pr.(684, Pr.706, Pr.707	′, Pr.711	l, Pr.71	ffline auto 2, Pr.721, 0 to 500/ 0 to 3600A	tuning (Pr.82 to Pr.8 Pr.724, Pr.725, Pr.859 Tuning data (The value measured by off	4, Pr.90 to Pr.94,)) îline auto tuning is	Se	vector	ss

									-
	82 agnetic flux	Motor excitation current	0.01/ 0.1A *1	9999	0 to 500/ 0 to 3600A *1	Tuning data (The value measured by offline auto tuning is automatically set.)	0	×	0
	ensorless Vector	current	0.17		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, etc.) constants			
	83	Rated motor voltage	0.1V	200/ 400V *2	0 to 1000V	Set the rated motor voltage(V).	0	0	0
	84	Rated motor frequency	0.01Hz	60Hz *3	10 to 300Hz	Set the rated motor frequency (Hz). (Limited at 120Hz when <i>Pr: 71</i> is set to a motor other than IPM)	0	0	0
	90	Motor constant (R1)	0.001Ω/ 0.01mΩ	9999	0 to 50Ω/ 0 to 400mΩ *1	Tuning data (The value measured by offline auto tuning is automatically set.)	0	×	0
			*1		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, MM-CF, etc.) constants			
	91 (Magnetic flux) (Sensorless)	Motor constant (R2)	0.001Ω /0.01mΩ	9999	0 to 50Ω/ 0 to 400mΩ *1	Tuning data (The value measured by offline auto tuning is automatically set.)	0	×	0
	Vector		*1		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, MM-CF, etc.) constants			
*1						apacity. (55K or lower/75K or higher)			
*2		al values differ according t		•	. ,				
*3	Performi	ng IPM parameter initializ	ation cha	nges the s	settings. (Refe	er to page 74)			

DRIVING THE MOTOR

\mathbb{Z}	

arameter						ter	ter	eter
Related parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter
92	Motor constant (L1)/ d-shaft inductance	0.001Ω (0.1mH) /0.1mΩ (0.01mH)	9999	0 to 50Ω (0 to 1000mH)/ 0 to 3600mΩ (0 to 400mH) *1	Tuning data (The value measured by offline auto tuning is automatically set.)	0	×	0
		*1		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, MM-CF, etc.) constants			
93	Motor constant (L2)/ q-shaft inductance	0.001Ω (0.1mH) /0.1mΩ (0.01mH)	9999	0 to 50Ω (0 to 1000mH)/ 0 to 3600mΩ (0 to 400mH) *1	Tuning data (The value measured by offline auto tuning is automatically set.)	0	×	C
		*1		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, MM-CF, etc.) constants			
94 (Magnetic flux) (Sensorless)	Motor constant (X)	0.01Ω (0.1%)/ 0.01Ω (0.01%)	9999	0 to 500Ω (0 to 100%)/ 0 to 100Ω (0 to 100%) *1	Tuning data (The value measured by offline auto tuning is automatically set.)	0	×	С
Vector		*1		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, MM-CF, etc.) constants			
				0	Offline auto tuning is not performed			
	Auto tuning setting/			1	Offline auto tuning is performed without motor running (other than MM-CF)			
96	status	1	0	11	Offline auto tuning is performed without motor running (MM-CF)	0	×	C
				101	Offline auto tuning by rotating an induction motor (no tuning during PM sensorless vector control)			
684	Tuning data unit	1	0	0	uning during PM sensorless vector control) nternal data converter value		0	
004	switchover	1	0	1	Displayed in "Α, Ω, mH, %".	0	Ŭ	
706	Induced voltage constant (phi f)	0.1mV⋅ s/rad	9999	0 to 5000mV⋅s/ rad	Adjust the constant if the current fluctuates during operation after tuning.	0	×	C
				9999	Constant value calculated based on the tuning data			
707	Motor inertia	4	0000	10 to 999	Set the motor inertia.	0		
PM	(integer)	1	9999	9999	Uses the inertia of the MM-CF IPM motor	0	0	0
711 РМ	Motor Ld decay ratio	0.1%	9999	0 to 100%, 9999		0	×	C
712	Motor Lq decay ratio	0.1%	9999	0 to 100%, 9999	Tuning data (The value measured by offline auto tuning is automatically set.)	0	×	C
721	Starting magnetic pole position detection pulse width	1µsec	9999	0 to 6000μs, 9999	9999: Motor constant of the MM-CF IPM motor. (Except 9999, the set value is the motor constant.)	0	×	C
724	Motor inertia			1 to 7	Set the motor inertia.	_	_	
PM	(exponent)	1	9999	9999	Uses the inertia of the MM-CF IPM motor	0	0	C
725	Motor protection	0.1%	9999	0 to 500%	Set the maximum current (OCT) level of the motor (%).	0	0	
PM	current level			9999	Uses the maximum current of MM-CF			
859	Torque current	0.01/ 0.1A *1	9999	0 to 500/ 0 to 3600A *1	Tuning data (The value measured by offline auto tuning is automatically set.)	0	×	C
				9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, MM-CF, etc.) constants			
	ements and setting range	differ acco	ording to	the inverter ca	apacity. (55K or lower/75K or higher)			
89	Refer to Pr. 80, Pr. 81							
) to 94	Refer to Pr. 82 to Pr. 8	81						

Parameter								эг
Related	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear
Selection	and protection of	a moto	or — 0	nline auto	o tuning (Pr.95, Pr.574)	Se	gnetic ensorle Vector	ss
	Online auto tuning			0	Online auto tuning is not performed			
95	selection	1	0	1	Start-time tuning (at start-up)	0	0	0
				2	Magnetic flux observer (normal)			
574 (Magnetic flux) (Sensorless)	Second motor online auto tuning	1	0	0, 1	Select the second motor online auto tuning. (same as <i>Pr. 95</i>)	0	0	0
96	Refer to Pr. 82 to Pr.	84.						
V/F patter	rn setting — Adjus	table 5	points	s V/F (Pr.7	1, Pr.100 to Pr.109)		V/F	
100	V/F1(first frequency)	0.01Hz	9999	0 to 400Hz, 9999		0	0	0
101	V/F1(first frequency voltage)	0.1V	0V	0 to 1000V		0	0	0
102	V/F2(second frequency)	0.01Hz	9999	0 to 400Hz, 9999		0	0	0
103	V/F2(second frequency voltage)	0.1V	0V	0 to 1000V		0	0	0
104	V/F3(third frequency)	0.01Hz	9999	0 to 400Hz, 9999	Set each points (frequency, voltage) of V/F pattern.	0	0	0
105	V/F3(third frequency voltage)	0.1V	0V	0 to 1000V	9999: No V/F setting	0	0	0
106	V/F4(fourth frequency)	0.01Hz	9999	0 to 400Hz, 9999		0	0	0
107	V/F4(fourth frequency voltage)	0.1V	0V	0 to 1000V	-	0	0	0
108	V/F5(fifth frequency)	0.01Hz	9999	0 to 400Hz, 9999	-	0	0	0
109	V/F5(fifth frequency voltage)	0.1V	0V	0 to 1000V		0	0	0
71	Refer to page 113.							
	Refer to Pr. 7, Pr. 8.							
112 113	Refer to <i>Pr. 0.</i> Refer to <i>Pr. 3.</i>							
	Refer to <i>Pr. 22</i> , <i>Pr. 23</i>	•						
114, 115	Refer to <i>Pr. 22</i> , <i>Pr. 25</i>							
			tina	Initial sof	ting for the RS-485 communication with			
the PU co	onnector (Pr.117 to	Pr.124	, Pr.55	1)	of parameter write by communication			
117	PU communication station number	1	0	0 to 31	Specify the inverter station number. Set the inverter station numbers when two or more inverters are connected to one personal computer.	0	0*	0,
118	PU communication speed	1	192	48, 96, 192, 384	Set the communication speed. The setting value \times 100 equals the communication speed. For example, the communication speed is 19200bps when the setting value is "192".	0	0*	0*

Parameter							ər	ar	ter
Related parameters	Name	Incre- ments	Initial Value	Range	Descrip	tion	Parameter copy	Parametei clear	All parameter clear
				0	Stop bit length: 1bit data leng	gth: 8bit			
110	PU communication			1	Stop bit length: 2bit data length	gth: 8bit	0	0*	^ *
119	stop bit length	1	1	10	Stop bit length: 1bit data length	gth: 7bit	0	0	0*
				11	Stop bit length: 2bit data length	gth: 7bit			
				0	Without parity check				
120	PU communication parity check	1	2	1	With odd parity check		0	0*	0*
				2	With even parity check				
121	Number of PU communication	1	1	0 to 10	Set the permissible number o a data receive error. If the number of consecutive permissible value, the inverte	itive errors exceeds the		0*	0*
	retries			9999	If a communication error occ trip.	urs, the inverter will not			
				0	No PU connector communica	ation			
122	PU communication check time interval	0.1s	9999	0.1 to 999.8s	Set the communication check If a no-communication state p permissible time, the inverter tr	ersists for longer than the	0	0*	0*
				9999	No communication check (signa	I loss detection)			
123	PU communication waiting time setting	1	9999	0 to 150ms	Set the waiting time between the inverter and response.	data transmission to	0	O*	0*
	walling lime setting			9999	Set with communication data	l.			
	DLL communication			0	Without CR/LF				
124	PU communication CR/LF selection	1	1	1	With CR		0	0*	0*
				2	With CR/LF				
342	Communication EEPROM write	1	0	0	Parameter values written by co to the EEPROM and RAM.	ommunication are written	0	0	0
0.12	selection		•	1	Parameter values written by written to the RAM.		0	0	
				1	Select the RS-485 terminals mode control source.	•			
	PU mode operation			2	Select the PU connector as t control source.				
551	command source selection	1	9999	3	Select the USB connector as control source.	the PU operation mode	0	0*	0*
				9999	USB automatic recognition Normally, the PU connector i when in the PU operation mo When the USB is connected, the command source.	ode.			
-	y and torque setti current) (Pr.125, Pr		-	-	Bias and gain for the fr to C7(Pr.905))	equency setting			
125 ©	Terminal 2 frequency setting gain frequency	0.01Hz	60Hz *	0 to 400Hz	Set the frequency of terminal (maximum).	I 2 input gain	0	×	0
126 ©	Terminal 4 frequency setting gain frequency	0.01Hz	60Hz *	0 to 400Hz	Set the frequency of terminal (maximum). (Valid when <i>Pr: 858</i> = 0 (initia	1 0	0	×	0
0.11	Analog input display	4	^	0	Displayed in %	Select the unit for analog	~	~	~
241	unit switchover	1	0	1	Displayed in V/mA	input display.	0	0	0
Performina	IPM parameter initialization	on change	s the set	tings. (Refer t	D page 74)				·

 \square

st

						Fa	ram		L13
Parameter	Name	Incre-	Initial	Range	Descrip	tion	Parameter copy	Parameter clear	parameter
Related parameters		ments	Value				Para	Para	All pa
C2 (902)	Terminal 2 frequency setting bias frequency	0.01Hz	0Hz	0 to 400Hz	Set the frequency on the bias	s side of terminal 2 input.	0	×	0
C3 (902)	Terminal 2 frequency setting bias	0.1%	0%	0 to 300%	Set the converted % of the bi of terminal 2 input.	as side voltage (current)	0	×	0
C4 (903)	Terminal 2 frequency setting gain	0.1%	100%	0 to 300%	Set the converted % of the gain side voltage of terminal 2 input.		0	×	С
C5 (904)	Terminal 4 frequency setting bias frequency	0.01Hz	0Hz	0 to 400Hz	Set the frequency on the bias side of terminal 4 input (Valid when $Pr. 858 = 0$ (initial value))		0	×	С
C6 (904)	Terminal 4 frequency setting bias	0.1%	20%	0 to 300%	Set the converted % of the bi of terminal 4 input. (Valid when <i>Pr. 858</i> = 0 (initia		0	×	C
C7 (905)	Terminal 4 frequency setting gain	0.1%	100%	0 to 300%	Set the converted % of the ga of terminal 4 input. (Valid when <i>Pr. 858</i> = 0 (initia		0	×	C
ie paramete	er number in parentheses	is the one	for use v	with the param	neter unit (FR-PU04/FR-PU07).				
pecial o	peration and frequ	iency c	ontrol	— PID co	ntrol (Pr.127 to Pr.134	, Pr.575 to Pr.577)			
127	PID control automatic	0.01Hz	9999	0 to 400Hz	Set the frequency at which the automatically changed to PI		0	0	C
	switchover frequency			9999	Without PID automatic switch	hover function			
				10	PID reverse action	Deviation value signal			
				11	PID forward action	(terminal 1)			
				20	PID reverse action	Measured value input			
128	PID action selection	1	10	21	PID forward action	(terminal 4) Set value (terminal 2 or <i>Pr. 133</i>)	0	0	0
120			10	50	PID reverse action	Deviation value signal		U	
				51	PID forward action	input (LONWORKS, CC- Link communication)			
				60	PID reverse action	Measured value, set			
				61	PID forward action	value input (LONWORKS, CC-Link communication)			
129	PID proportional band	0.1%	100%	0.1 to 1000%	If the proportional band is narr small), the manipulated variat slight change of the measured proportional band narrows, the (gain) improves but the stabili hunting occurs. Gain K = 1/proportional band	ble varies greatly with a d value. Hence, as the e response sensitivity	0	0	c
				9999	No proportional control		1		
130	PID integral time	0.1s	1s	0.1 to 3600s	No proportional control When deviation step is input, time (Ti) is the time required for integral (I) action to provide the same manipulated variable as the proportional (P) action. As the integral time decreases, the set point is reached earlier but hunting occurs more easily.		0	0	C
				9999	No integral control.		1		
131	PID upper limit	0.1%	9999	0 to 100%	Set the upper limit value. If the feedback value exceeds t is output. The maximum input measured value (terminal 4) is	(20mA/5V/10V) of the	0	0	(
				9999	No function				
				0 to 100%	Set the lower limit value. If the measured value falls be the FDN signal is output.	elow the setting range,			

0 to 100%

0 to 100%

9999

9999

132

133

PID lower limit

PID action set point

0.1%

0.01%

9999

9999

the FDN signal is output.

No function

The maximum input (20mA/5V/10V) of the measured

value (terminal 4) is equivalent to 100%.

Used to set the set point for PID control.

Terminal 2 input voltage is the set point.

Parameter List

3

121

0

0

0

0

0

Related parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear
134	PID differential time	0.01s	0.01 to 10.00s 9999		For deviation lamp input, time (Td) required for providing only the manipulated variable for the proportional (P) action. As the differential time increases, greater response is made to a deviation change.	0	0	0
					No differential control.			1
575	Output interruption detection time	0.1s	1s	0 to 3600s	If the output frequency after PID operation remains lower than the $Pr. 576$ setting for longer than the time set in $Pr. 575$, the inverter stops operation.	0	0	0
				9999	Without output interruption function			1
576	Output interruption detection level	0.01Hz	0Hz	0 to 400Hz	Set the frequency at which the output interruption processing is performed.	0	0	0
577	Output interruption cancel level	0.1%	1000%	900 to 1100%	Set the level (<i>Pr. 577</i> minus 1000%) to release the PID output interruption function.	0	0	0
Special operation and frequency control — Switching between the inverter and the bypass							V/F gnetic f	

Special operation and frequency control — Switching between the inverter and the bypass operation (Pr.135 to Pr.139, Pr.159)

Sensorless
Voctor

							Vector	
135	Electronic bypass	1	0	0	Without electronic bypass sequence	0	0	0
155	sequence selection	1	0	1	With electronic bypass sequence	0	0	0
136	MC switchover interlock time	0.1s	1s	0 to 100s	Set the operation interlock time of MC2 and MC3.	0	0	0
137	Start waiting time	0.1s	0.5s	0 to 100s	Set the time slightly longer (0.3 to 0.5s or so) than the time from when the ON signal enters MC3 until it actually turns on.	0	0	0
				0	Inverter output is stopped (motor coast) at inverter fault.			
138	Bypass selection at a fault	1	0	1	Operation is automatically switched to bypass operation at inverter fault (Not switched when an external thermal relay operation (E.OHT) or CPU fault (E.CPU) occurs)	0	0	0
	Automatic switchover			0 to 60Hz	Set the frequency to switch inverter operation to bypass operation.			
139			9999	9999	Without automatic switchover		0	0
159	Automatic switchover frequency range from bypass to	0.01Hz	9999	0 to 10Hz	Valid during automatic switchover operation ($Pr: 139 \neq 9999$) When the frequency command decreases below ($Pr: 139 - Pr: 159$) after operation is switched from inverter operation to bypass operation, the inverter automatically switches operation to inverter operation and operates at the frequency of frequency command. When the inverter start command (STF/STR) is turned off, operation is switched to inverter operation also.	0	0	C
	inverter operation			9999	Valid during automatic switchover operation (<i>Pr</i> : $139 \neq$ 9999) When the inverter start command (STF/STR) is turned off after operation is switched from inverter operation to bypass operation, operation is switched to inverter operation and the motor decelerates to stop.			
40 to 143	Refer to Pr. 29.							
144	Refer to Pr. 37.							

Devenueter								
Parameter Barameter barameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear
Setting of	f the parameter un	it and o	operati	on panel	— Parameter unit language switchover			
(Pr.145)								
				0	Japanese			
				1	English			
				2	Germany			
145	PU display	1	0	3	French	0	×	×
	language selection		-	4	Spanish	_		
				5	Italian			
				6	Swedish			
				7	Finnish			
147	Refer to Pr. 7, Pr. 8.							
148,149	Refer to Pr. 22, Pr. 23							
Detection	of output frequer	ncy, cur	rrent, a	nd torque	e — Detection of output current (Y12			
signal) ar	nd zero current (Y1	13 sign	al) (Pr.	150 to Pr.	153, Pr.166, Pr.167)			
150	Output current detection level	0.1%	150%	0 to 220%	Set the output current detection level. 100% is the rated inverter current.	0	0	0
151	Output current detection signal delay time	0.1s	0s	0 to 10s	Set the output current detection period. Set the time from when the output current has risen above the setting until the output current detection signal (Y12) is output.	0	0	0
152	Zero current detection level	0.1%	5%	0 to 220%	Set the zero current detection level. Suppose that the rated inverter current is 100%.	0	0	0
153	Zero current detection time	0.01s	0.5s	0 to 1s	Set this parameter to define the period from when the output current drops below the <i>Pr</i> : <i>152</i> value until the zero current detection signal (Y13) is output.	0	0	0
	Output current			0 to 10s	Set the retention time when the Y12 signal is on.			
166	detection signal retention time	0.1s	0.1s	9999	The Y12 signal on status is retained. The signal is turned off at the next start.	0	0	0
	Output current			0	Operation continues when the Y12 signal is on			
167	detection operation selection	1	0	1	The inverter trips when the Y12 signal is on. (E.CDO)	0	0	0
154	Refer to Pr. 22, Pr. 23							
Function	assignment of ext	ternal t	ermina	l and con	trol — Selection of action conditions of			
the secor	d/third function (F	RT/X9 s	ignal)	(Pr.155)				
	RT signal function			0	Second (third) function is immediately valid with ON of the RT (X9) signal.			
155	validity condition selection	1	0	10	Second (third) function is valid only during the RT (X9) signal is on and constant speed operation. (invalid during acceleration/deceleration)	0	0	0
156, 157	Refer to Pr. 22, Pr. 23							
158	Refer to Pr. 52, Pr. 54	!.						
159	Refer to Pr. 135 to Pr.	139.						

Pa	Related parameters	Name	Incre- ments	Initial Value	Range	Descrij	otion	Parameter copy	Parameter clear	All parameter clear
Mis	_	tion prevention ar	nd para	meter	setting re	striction — Displaying	necessary	<u> </u>	<u> </u>	
pai	ramete	rs only (user grou	p) (Pr.1	60, Pr.	172 to Pr	.174)				
					0	All parameters can be displa	ayed.			
1	60 ©	User group read selection	1	0	1	Only the parameters register be displayed.	red in the user group can	0	0	0
-					9999	Only the simple mode paran	neters can be displayed.			
	172	User group registered display/	1	0	(0 to 16)	Displays the number of case group (reading only).	es registered as a user	0	×	×
		batch clear			9999	Batch clear the user group r	egistration			
	173	User group registration	1	9999	0 to 999, 9999	Set the parameter numbers user group. Read value is always "9999	0	×	×	×
Ī	174	User group clear	1	9999	0 to 999, 9999	Set the parameter numbers user group. Read value is always "9999		×	×	×
	tting of nel (Pr.	•	it and o	operati	on panel	- Operation selection	n of the operation			
					0	Setting dial frequency setting mode				
	161	Frequency setting/ key lock operation	1	0	1	Setting dial potentiometer mode	-Key lock invalid	0		0
	101	selection		0	10	Setting dial frequency setting mode	Key lock valid		×	
					11	Setting dial potentiometer mode				
16	2 to 165	Refer to Pr. 57, Pr. 58	3.							
16	66, 167	167 Refer to Pr. 150 to Pr. 153.								
16	68, 169	Parameter for manu	facturer	setting.	Do not set.					
17	70, 171	Refer to Pr. 52, Pr. 54	1.							
17	2 to 174	Refer to Pr. 160.								

Parameter Related barameters	Name	Incre- ments	Initial Value	Range	Range Description						
unction	-	ernal te	ermina	I and con	trol — Function assignment of input						
erminals	(Pr.178 to Pr.189)							1			
178	STF terminal function selection	1	60	0 to 20, 22 to 28, 42 to 44, 60, 62, 64 to 71, 74, 83, 9999	 Low-speed operation command (RL) Middle-speed operation command (RM) High-speed operation command (RH) Second function selection (RT) Terminal 4 input selection (AU) Jog operation selection (JOG) 	0	×	0			
179	STR terminal function selection	1	61	0 to 20, 22 to 28, 42 to 44, 61, 62, 64 to 71, 74, 83, 9999	 20, o 28, o 24, 61, 61, 64 to 71, 83, 9999 61 Selection of automatic restart after instantaneous power failure, flying start (CS) 7: External thermal relay input (OH) 8: 15-speed selection (REX) 9: Third function selection (X9) 10: Inverter run enable signal (FR-HC2, FR-CV connection) (X10) 						
180	RL terminal function selection	1	0	0 to 20,	connection) (X10)	0	×	0			
181	RM terminal function selection	1	1	22 to 28, 42 to 44, 62,	detection (X11) 12: PU operation external interlock (X12) 13: External DC injection brake start (X13)	0	×	0			
182	RH terminal function selection	1	2	64 to 71, 74, 83, 85, 88, 89, 9999	14: PID control valid terminal (X14) 15: Brake opening completion signal (BRI)	0	×	0			
183	RT terminal function selection	1	3		16: PU/External operation switchover (X16)17: Load pattern selection forward/reverse rotation boost (X17)	0	×	0			
184	AU terminal function selection	1	4	0 to 20, 22 to 28, 42 to 44, 62 to 71, 74, 83, 85, 88, 89, 9999	 18: V/F switchover (X18) 19: Load torque high-speed frequency (X19) 20: S-pattern acceleration/deceleration C switchover (X20) 22: Orientation command (X22) *1 23: Pre-excitation/servo ON (LX) 24: Orientation (MDO) 	0	×	0			
185	JOG terminal function selection	1	5	0 to 20, 22 to 28, 42 to 44, 62, 64 to 71, 74, 76, 83, 85, 88, 89, 9999	23: Pre-excitation/servo ON (LX)39, 999923: Pre-excitation/servo ON (LX)24: Output stop (MRS)25: Start self-holding selection (STOP)26: Control mode switchover (MC)27: Torque limit selection (TL)28: Start time tuning (X28)76, 83, 85,42: Torque bias selection 1 (X42) *1						
186	CS terminal function selection	1	6		 44: P/PI control switchover (X44) 60: Forward rotation command (STF) (assigned to STF terminal (<i>Pr: 178</i>) only) 	0	×	0			
187	MRS terminal function selection	1	24		61: Reverse rotation command (STR) (assigned to STR terminal (<i>Pr: 179</i>) only)	0	×	0			
188	STOP terminal function selection	1	25		63: PTC thermistor input (PTC) (assigned to AU terminal (<i>Pr. 184</i>) only)	0	×	0			
189	RES terminal function selection	1	62	0 to 20, 22 to 28, 42 to 44, 62, 64 to 71, 74, 83, 85, 88, 89, 9999	terminal (<i>Pr. 184</i>) only) 64: PID forward/reverse action switchover (X64) 65: PU/NET operation switchover (X65) 66: External/NET operation switchover (X66) 67: Command source switchover (X67) 68: Simple position pulse train sign (NP) 69: Simple position droop pulse clear (CLR) 70: DC feeding operation permission (X70) 71: DC feeding cancel (X71)						

 \mathbb{Z}

3

Parameter Related Parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear
	-	ernal to	ermina	l and con	trol — Function assignment of output			
terminals	6 (Pr.190 to Pr.196)				0, 100: Inverter running (RUN)	[[
190	RUN terminal function selection	1	0		 1, 101: Up to frequency (SU) 2, 102: Instantaneous power failure/undervoltage (IPF) 3, 103: Overload alarm (OL) 4, 104: Output frequency detection (FU) 5, 105: Second output frequency detection (FU2) 	0	×	0
191	SU terminal function selection	1	1	0 to 8, 10 to 20, 25 to 28, 30 to 36, 39, 41 to 47, 55, 57, 64, 70.	 6, 106: Third output frequency detection (FU3) 7, 107: Regenerative brake pre-alarm (RBP) 8, 108: Electronic thermal O/L relay pre-alarm (THP) 10, 110:PU operation mode (PU) 11, 111: Inverter operation ready (RY) 12, 112:Output current detection (Y12) 13, 113:Zero current detection (Y13) 14, 114:PID lower limit (FDN) 	0	×	0
192	IPF terminal function selection	1	2	83 to 85, 90 to 99, 100 to 108, 110 to 116, 120, 125 to 128,	 15, 115:PID upper limit (FUP) 16, 116:PID forward/reverse rotation output (RL) 17, —: Electronic bypass MC1 (MC1) 18, —: Electronic bypass MC2 (MC2) 19, —: Electronic bypass MC3 (MC3) 20, 120:Brake opening request (BOF) 25, 125:Fan fault output (FAN) 	0	×	0
193	OL terminal function selection	1	3	130 to 136, 139, 141 to 147, 155, 157, 164, 170, 183 to 185, 190 to 199, 9999	 26, 126:Heatsink overheat pre-alarm (FIN) 27, 127:Orientation complete (ORA) *1 28, 128:Orientation fault (ORM) *1 30, 130:Forward rotation output (Y30) *1 31, 131:Reverse rotation output (Y31) *1 32, 132:Regenerative status output (Y32) *1 33, 133:Operation ready 2 (RY2) 34, 134:Low speed detection (LS) 	0	×	0
194	FU terminal function selection	1	4	- 9999	 34, 134.Low speed detection (LS) 35, 135:Torque detection (TU) 36, 136:In-position (Y36) 39, 139:Start time tuning completion (Y39) 41, 141:Speed detection (FB) 42, 142:Second speed detection (FB2) 43, 143:Third speed detection (FB3) 44, 144:Inverter running 2 (RUN2) 	0	×	0
195	ABC1 terminal function selection	1	99	0 to 8, 10 to 20, 25 to 28, 30 to 36, 39, 41 to 47, 55, 57, 64,	 45, 145:Inverter running and start command is ON (RUN3) 46, 146:During deceleration at occurrence of power failure (retained until release) (Y46) 47, 147:During PID control activated (PID) 55, 155:Motor temperature detection (Y55) *2 57, 157:PM sensorless vector control (IPM) 64, 164:During retry (Y64) 	0	×	0
196	ABC2 terminal function selection	1	9999	70, 83 to 85, 90, 91, 94 to 99, 100 to 108, 110 to 116, 120, 125 to 128, 130 to 136, 139, 141 to 147, 155, 157, 164, 170, 183 to 185, 190, 191, 194 to 199, 9999	 104, 104-Dulling letty (104) 70, 170:PID output interruption (SLEEP) 83, 183:During 0V voltage calibration (Y83) *3 84, 184:Preparation ready signal (RDY) 85, 185:DC current feeding (Y85) 90, 190:Life alarm (Y90) 91, 191:Fault output 3 (power-off signal) (Y91) 92, 192:Energy saving average value updated timing (Y92) 93, 193:Current average value monitor signal (Y93) 94, 194:Fault output 2 (ALM2) 95, 195:Maintenance timer signal (Y95) 96, 196:Remote output (REM) 97, 197:Alarm output 2 (ER) 98, 198:Alarm output (LF) 99, 199:Fault output (ALM) 9999: No function 0 to 99: Positive logic 100 to 199: Negative logic 	0	×	0

 \mathbb{Z}

Parameter									L_
Related	Name	Incre- ments	Initial Value	Range	Descrip	otion	Parameter copy	Parameter clear	All parameter clear
232 to 239	Refer to Pr. 4 to Pr. 6.				•				
240	Refer to Pr. 72.								
241	Refer to Pr. 125 and I	Pr. 126.							
242, 243	Refer to Pr. 73.								
Useful fu	nctions — Lifespa	n exten	ision o	of the cool	ing fan (Pr.244)				
				0	Operates at power on Cooling fan on/off control inv always on at power on)	、 、			
244	Cooling fan operation selection	1	1	1	Cooling fan on/off control val The fan is normally on during fan switches on/off according during a stop of the inverter monitored.	g inverter operation. The g to the temperature	0	0	0
Adjusting	, the output torque	e (curre	nt) of	the motor	- Slip compensation	(Pr.245 to Pr.247)	ſ	V/F	:
245	Potod clip	0.01%	0000	0 to 50%	Used to set the rated motor s	slip.		~	
245	Rated slip	0.01%	9999	9999	No slip compensation		0	0	0
246	Slip compensation time constant	0.01s	0.5s	0.01 to 10s	Used to set the response tim When the value is made sma faster. However, as load iner regenerative overvoltage (E. liable to occur.	aller, response will be tia is greater, a	0	0	0
247	Constant-power range slip compensation	1	9999	0	Slip compensation is not may range (frequency range abov <i>Pr. 3</i>)		0	0	0
	selection			9999	Slip compensation is made in range.	n the constant power			
Motor bra	ke and stop opera	ation —	Motor	stop met	hod and start signal s	election (Pr.250)	I	I	1
Function	assignment of ext	ernal te	ermina	l and con	trol — Start signal sel	ection (Pr.250)			
	_			0 to 100s	The motor is coasted to a stop when the preset time elapses after the start signal is turned off.	STF signal: Forward rotation start STR signal: Reverse rotation start			
250	Stop coloction	0.1s	9999	1000 to 1100s	The motor is coasted to a stop ($Pr: 250 - 1000$)s after the start signal is turned off.	STF signal: Start signal STR signal: Forward/ reverse signal	0	0	0
250	Stop selection	0.15	9999	9999	When the start signal is turned off, the motor	STF signal: Forward rotation start STR signal: Reverse rotation start	0		
				8888	decelerates to stop.	STF signal: Start signal STR signal: Forward/ reverse signal			
Operation	n setting at fault o	ccurrer	ice — I	Input pha	se failure protection s	election (Pr.251,			
Pr.872)				1				1	
251	Output phase loss	1	1	0	Without output phase loss pr		0	0	0
[protection selection			1 0	With output phase loss prote Without input phase loss pro				<u> </u>
872	Input phase loss protection	1	0	1	With input phase loss protect		0	0	0
252, 253	Refer to Pr. 73.	1		<u> </u>			I	<u> </u>	<u> </u>
Useful fu	nctions — To disp	lay life	of inve	erter parts	6 (Pr.255 to Pr.259)				
255	Life alarm status display	1	0	(0 to 15)	Display whether the control circuit capacitor, main circuit capacitor, cooling fan, and each parts of the inrush current limit circuit has reached the life alarm output level or not. Reading only			×	×

3

256 Inrush current limit circuit life display 1% 100% 0 to 100% Display the deterioration degree of the inrush current limit circuit. Reading only ×	Related Parameters	Name	Incre- ments	Initial Value	Range	Descrip	tion	Parameter copy	Parameter clear	All parameter clear
257 capacitor life display 1% 100% (0 to 100%) Display the deterioration degree of the control circuit capacitor. Reading only × × × 258 display 1% 100% (0 to 100%) Display the deterioration degree of the control circuit capacitor. Reading only ×			1%	100%			ree of the inrush current	×	×	×
258 capacitor life display 1% 100% 00% 100% capacitor. Reading only The value measured by <i>Pr. 259</i> is displayed. x x 259 Main circuit capacitor life. 1 0 0, 1 Setting "1" and turning the power supply off starts the measurement of the main circuit capacitor life. 0 0 259 capacitor life. 1 0 0, 1 When the <i>Pr.259</i> value is "3" after powering on gain. 0 0 Motor brake and stop operation — Decelerate the motor to a stop at instantaneous power failure (Pr.261 to Pr.266, Pr.294) 0 Coasting to stop Operation selection at power failure and instantaneous power failure (Pr.261 to Pr.266, Pr.294) 0 Coasting to stop Operation selection 1 0 Coasting to stop When undervoltage or power failure occurs, the inverter output is sturt off. 1 261 Power failure stop selection 1 0 Coasting to stop When undervoltage or power failure occurs, the inverter can be decelerated to a stop. 0 0 0 262 Subtracted frequency at deceleration starting frequency at deceleration starting frequency at deceleration starting 0.01Hz 0 0 0 0 0 0 0 263	257	capacitor life	1%	100%			ree of the control circuit	×	×	×
259Main circuit capacitor life measuring1001measurement of the main circuit capacitor life. When the <i>P</i> :23 value is "3" after powering on again, the measuring is completed. Read the deterioration degree in <i>P</i> :238. \bigcirc \bigcirc \bigcirc Motor brake and stop operation — Decelerate the motor to a stop at instantaneous power failure (Pr.261 to Pr.266, Pr.294) \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Operation selection at power failure and instantaneous power failure — Decelerate the motor to a stop at instantaneous power failure (Pr.261 to Pr.266, Pr.294) \bigcirc \bigcirc \bigcirc \bigcirc 261Power failure stop selection1 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 261Power failure stop selection1 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 262Subtracted frequency at deceleration start \bigcirc 263Subtracted frequency at deceleration start \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 264Power-failure deceleration start \bigcirc 265Power-failure deceleration time \bigcirc 262Subtracted frequency \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc <td>258</td> <td>capacitor life</td> <td>1%</td> <td>100%</td> <td></td> <td>capacitor. Reading only</td> <td></td> <td>×</td> <td>×</td> <td>×</td>	258	capacitor life	1%	100%		capacitor. Reading only		×	×	×
failure (Pr.261 to Pr.266, Pr.294) Operation selection at power failure and instantaneous power failure — Decelerate the motor to a stop at instantaneous power failure (Pr.261 to Pr.266, Pr.294) 261 Power failure stop selection 1 0 Coasting to stop 2611 Power failure stop selection 1 0 Coasting to stop When undervoltage or power failure occurs, the inverter cutput is shut off. When undervoltage or apower failure occurs, the inverter cutput is shut off. When undervoltage or apower failure occurs, the inverter can be decelerated to a stop. 1 Without undervoltage avoidance When undervoltage or apower failure occurs, the inverter can be decelerated to a stop. If power is restored during a power failure occurs, the inverter can be decelerated to a stop. If power is restored during a power failure, the inverter can be decelerated to a stop. If power is restored during a power failure, the inverter can be decelerated to a stop. If power is restored during a power failure, the inverter can be decelerated to a stop. If power is restored during a power failure, the inverter can be decelerated to a stop. If power is restored during a power failure, the inverter can be decelerated to a stop. If power is restored during a power failure, the inverter can be decelerated to a stop. If power is restored during a power failure, the inverter can be decelerate is a stop. If power is restored during a power failure, the inverter can be decelerated to a stop. If power is restored dur	259	capacitor life	1	0	0, 1	measurement of the main cir When the <i>Pr.259</i> value is "3" a the measuring is completed.	cuit capacitor life. after powering on again,	0	0	0
$ 261 \begin{array}{ c c c c } 261 \end{array} \begin{array}{ c c c } Power failure stop \\ selection \end{array} \begin{array}{ c c } 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Operation	n selection at pow	er failu			.261 to Pr.266, Pr.294)	Decelerate the	Γ		
261Power failure stop selection11 0° $\frac{1}{10}$ $\frac{avoidance}{avoidance}$ $a power failure occurs,the inverter can bedecelerated to a stop.\circ\circ261Power failure stopselection10^{\circ}\frac{1}{2}\frac{avoidance}{avoidance}a power failure occurs,the inverter can bedecelerated to a stop.\circ\circ\circ\circ261Subtractedfrequency atdeceleration start0.01Hz3Hz0\circO\circ\circ\circ\circ\circ\circ\circ263Subtraction startingfrequency0.01Hz3Hz0\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ264Power-failuredeceleration time 10.1/z\circ<$					0	When undervoltage or power	r failure occurs, the			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1	0	a power failure occurs,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				_	11	With undervoltage avoidance				
262Subtracted frequency at deceleration starting frequency at deceleration time 10.01Hz3Hz0 to 20HzNormally operation can be performed with the initial value unchanged. But adjust the frequency according to the magnitude of the load specifications (moment of inertia, torque). \circ \circ 263Subtraction starting frequency0.01Hz 0.01 Hz 3 Hz0 to 20HzNormally operation can be performed with the initial value unchanged. But adjust the frequency according to the magnitude of the load specifications (moment of inertia, torque). \circ \circ 263Subtraction starting frequency 0.01 Hz 6 Hz * \circ \circ \circ \circ \circ 264Power-failure deceleration time 1 $0.1'$ 0.01s 5 s \circ \circ \circ \circ \circ \circ 265Power-failure deceleration time 2 $0.1'$ 0.01s 5 s \circ \circ \circ \circ \circ \circ \circ 266Power failure deceleration time 2 $0.1'$ 0.01s 9 \circ \circ \circ \circ \circ \circ 267Power failure deceleration time 2 $0.1'$ 0.01s \circ \circ \circ \circ \circ \circ \circ 268Power failure deceleration time 2 $0.1'$ 0.01s \circ \circ \circ \circ \circ \circ \circ 266Power failure deceleration time 2 \circ \circ \circ \circ \circ \circ \circ \circ 266Power failure deceleration time 2 \circ \circ <	201			0	2	0	a power failure occurs, the inverter can be decelerated to a stop.	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					12	With undervoltage avoidance	during a power failure, the inverter accelerates			
263Subtraction starting frequency0.01Hz $0.01Hz$ 0.0	262	frequency at	0.01Hz	3Hz	0 to 20Hz	value unchanged. But adjust to the magnitude of the load	the frequency according	0	0	0
264Power-failure deceleration time 10.1/ 0.01s5s0 to 3600/ 360sSet a deceleration slope down to the frequency set in $Pr. 266.$ 00265Power-failure deceleration time 20.1/ 0.01s99990 to 3600/ 	263	•	0.01Hz	60Hz *	0 to 400Hz	Decelerate from the speed frequency minus <i>Pr. 262</i> . When output frequency < <i>Pr</i> .	d obtained from output 263	0	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					9999		btained from output			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	264			5s		-	n to the frequency set in	0	0	0
266 Power failure deceleration time switchover 0.01Hz 60Hz * 0 to 400Hz Set the frequency at which the deceleration slope is switched from the <i>Pr. 264</i> setting to the <i>Pr. 265</i> setting. O O	265			9999	360s	Pr. 266.	ow the frequency set in	0	0	0
	266	deceleration time switchover	0.01Hz	60Hz *		Set the frequency at which th		0	0	0
294UV avoidance voltage gain0.1%100%0 to 200%Adjust response level at undervoltage avoidance operation. A larger setting will improve responsiveness to the bus voltage change.OO	294		0.1%	100%	0 to 200%	operation. A larger setting wi	Il improve	0	0	0
Performing IPM parameter initialization changes the settings. (Refer to page 74)	Performing	IPM parameter initializati	on change	es the set	tings. (Refer t	0 page 74)				·

Parameter									ř
Related parameters	Name	Incre- ments	Initial Value	Range	Descrip	tion	Parameter copy	Parameter clear	All parameter clear
268	Refer to Pr. 52, Pr. 54	!.							
269	Parameter for manut	facturer	setting.	Do not set.					
Special o	peration and frequ	lency c	ontrol	— Load t	orque high speed freq	uency control			
Pr.270 to	Pr.274)								
				0	Without stop-on contact cont speed frequency control	rol and load torque high-			
				1	Stop-on contact control				
	Stop-on contact/ load torque high-			2	Load torque high speed frequencies	•			
270	speed frequency	1	0	3	Stop-on contact + load torque control	e high speed frequency	0	0	0
				11	Stop-on contact control	E.OLT invalid under			
				13	Stop-on contact + load torque high speed frequency control				
271	High-speed setting maximum current	0.1%	50%	0 to 220%		0	0	0	
272	Middle-speed setting minimum current	0.1%	100%	0 to 220%	Set the upper and lower limit and middle speeds.	0	0	0	
273	Current averaging	0.01Hz	9999	0 to 400Hz	Average current during accel 2)Hz to (<i>Pr. 273</i>)Hz can be a		0	0	0
215	range	0.01112	3333	9999	Average current during accel 2)Hz to (<i>Pr. 5</i>)Hz is achieved		<u> </u>		
274	Current averaging filter time constant	1	16	1 to 4000	Set the time constant of the prelative to the output current. (The time constant [ms] is 0. initial value is 12ms.) A larger setting provides high response.	$75 \times Pr. 274$ and the	0	0	0
Actor by	les and stan analy	- 4 1 - 10	Cton		t control (Dr 070, Dr 07	ZE D., 070)	Ma	gnetic	flux
Notor bra	ike and stop opera	ation —	Stop-	on contac	t control (Pr.270, Pr.27	5, Pr.276)	Se	ensorle	ss
275	Stop-on contact excitation current low-speed	0.1%	9999		Usually set a value between Set the force (holding torque control.		0	0	0
	multiplying factor			9999	No compensation.				
276	PWM carrier frequency at stop-	1	9999	0 to 9/ 0 to 4 *	Set a PWM carrier frequency control. (Valid at the output frequency	•	0	0	0
	on contact			9999	As set in Pr. 72 PWM frequence	ry selection.			
270	Refer to Pr. 270 to Pr.	274.							
The setting	range differs according to	the inver	ter capac	ity. (55K or lov	wer/75K or higher)				_
lotor bra	ike and stop opera	ation —	Brake	sequenc	e function (Pr.278 to P	r.285, Pr.292)	Se	gnetic ensorie Vector	ss
278	Brake opening frequency	0.01Hz	3Hz	0 to 30Hz	Set to the rated slip frequenc 1.0Hz. This parameter may be only		0	0	0
279	Brake opening current	0.1%	130%	0 to 220%	Generally, set this parameter the setting is too low, the loa gravity at start. Suppose that the rated inver	d is liable to drop due to	0	0	0
280	Brake opening current detection	0.1s	0.3s	0 to 2s	Generally, set this parameter		0	0	0

 \mathbb{Z}

Parameter List

Ра	rameter							er	er	eter
	Related parameters	Name	Incre- ments	Initial Value	Range	Descrip	otion	Parameter copy	Parameter clear	All parameter clear
	281	Brake operation time at start	0.1s	0.3s	0 to 5s	Pr: 292 = 7 or 17: Set the me the brake is loosened. Pr: 292 = 8 or 18: Set the me the brake is loosened + about	chanical delay time until	0	0	0
	282	Brake operation frequency	0.01Hz	6Hz	0 to 30Hz	At this frequency, the brake (BOF) is switched off. Gener to the <i>Pr. 278</i> setting + 3 to 4 Setting is enabled only wher	ally, set this parameter Hz.	0	0	0
	283	Brake operation time at stop	0.1s	0.3s	0 to 5s	<i>Pr.</i> 292 = 7 or 17: Set the me the brake is closed + 0.1s. <i>Pr.</i> 292 = 8 or 18: Set the me the brake is closed + about (chanical delay time until	0	0	0
	004	Deceleration			0	Deceleration is not detected				
Ma	284 agnetic flux Vector	Deceleration detection function selection	1	0	1	If deceleration is not normal operation, the inverter fault (trip the inverter and turn off t request signal (BOF).	E.MB2) is provided to	0	0	0
	285	Overspeed detection frequency	0.01Hz	9999	0 to 30Hz	When brake sequence funct encoder feedback control If (detected frequency) - (out under encoder feedback cor (E.MB1) is provided to trip th the brake opening request s	tput frequency) > <i>Pr. 285</i> htrol, the inverter fault he inverter and turn off	0	0	0
					9999	Overspeed is not detected.	1			
					0	Normal operation mode				
					1, 11	Shortest acceleration/ deceleration mode	Refer to <i>Pr. 61 to</i> <i>Pr. 64</i> .			
		Automatic			3	Optimum acceleration/ deceleration mode	<i>Pr</i> . 04.			
					5, 6	Elevator mode				
	292	acceleration/ deceleration	1	0	7	Brake sequence mode 1 (with BRI signal)	Disabled when the second or third	0	0	0
					8	Brake sequence mode 2 (without BRI signal)	function is selected			
					17	Brake sequence mode 1 (with BRI signal)	Enabled even if the second or third			
					18	Brake sequence mode 2 (without BRI signal)	function is selected			
Sp	eed co	ntrol — Avoiding ı	motor c	verrur	nning (Pr.:	285, Pr.853)			Vector	
	285	Overspeed	0.01Hz	9999	9999	Without speed deviation exc	essive	0	0	0
-		detection frequency			0 to 30Hz	If the difference (absolute va command value and actual s				
	853	Speed deviation time	0.1s	1s	0 to 100s	285 Overspeed detection freque than the time set in <i>Pr.</i> 853 Sp speed control under vector of excessive occurs and error " resulting in a stop.	<i>ency</i> setting for longer <i>beed deviation time</i> during control, speed deviation	0	0	0
Sp	ecial o	peration and frequ	iency c	ontrol	— Droop	control (Pr.286 to Pr.2	288, Pr.994, Pr.995)	Se	gnetic f ensorle Vector PM	ss
	<u> </u>		0.40	<u> </u>	0	Droop control is invalid		~	~	
	286	Droop gain	0.1%	0%	0.1 to 100%	Set the drooping amount at the percentage with respect to the terms of terms of the terms of	ne rated frequency.	0	0	0
	287	Droop filter time constant	0.01s	0.3s	0 to 1s	Set the time constant of the applied to the torque current		0	0	0

Related parameters	Name	Incre- ments	Initial Value	Range	Descrip	otion	Parameter copy	Parameter clear	All parameter
					Real sensor less vector/ vector/PM sensorless vector control	Advanced magnetic flux vector control			
288	Droop function	1	0	0, 10	Droop control is not exercised during acceleration/deceleration. (When $Pr.288 = 10$, droop compensation amount is determined using the motor speed as reference.)	Droop control is not exercised during	0	0	0
200	activation selection	1	0	1, 11	Droop control is always exercised during operation. (with 0 limit) (When $Pr.288$ = 11, droop compensation amount is determined using the motor speed as reference.)	acceleration/ deceleration. Droop compensation amount is determined using the rated motor frequency as reference.	0	0	
				2	Droop control is always exercised during operation. (without 0 limit)				
994	Droop break point gain	0.1%	9999	0.1 to 100%	Set the changing droop amo value of the rated motor freq	1 0	0	0	0
	Droop break point			9999 0.1 to	No function				
995	torque	0.1%	100%	100%	Set the torque where the dro		0	0	0
pecial o	peration and frequ	iency c	ontrol	— Pulse t	train I/O (Pr.291, Pr.384	-			1
				0	Input JOG terminal	Output FM output			
				1	Pulse train input	FM output			
				10	JOG terminal	Pulse train open			
				11	Pulse train input	collector output (50% duty)			
291	Pulse train I/O	1	0	20	JOG terminal	Pulse train open	0	×	0
291	selection	1	0	21		collector output (ON width is always same)	0	~	
				100	Pulse train input	Pulse train open collector output (ON width is always same (independently of <i>Pr</i> : <i>54</i>))			
384	Input pulse division scaling factor	1	0	0 to 250	Indicates division scaling fact the frequency resolution to th according to the value.	or to the input pulse and e input pulse changes	0	0	0
	scaling factor					the input pulse is 0 (bias).			
385	Frequency for zero input pulse	0.01Hz	0	0 to 400Hz	Set the frequency when the	input pulse is 0 (bias).	0	0	0
386	Frequency for zero input pulse Frequency for maximum input pulse	0.01Hz	60Hz *	0 to 400Hz	Set the frequency when the (gain).	、 /	0	0	
386 Performing	Frequency for zero input pulse Frequency for maximum input pulse IPM parameter initializati	0.01Hz	60Hz *	0 to 400Hz	Set the frequency when the (gain).	、 /			
386 Performing 92, 293	Frequency for zero input pulse Frequency for maximum input pulse IPM parameter initializati Refer to <i>Pr. 61 to Pr.</i>	0.01Hz on change	60Hz *	0 to 400Hz	Set the frequency when the (gain).	、 /			
386 Performing 92, 293 294	Frequency for zero input pulse Frequency for maximum input pulse IPM parameter initializati Refer to <i>Pr. 61 to Pr.</i> Refer to <i>Pr. 261 to Pr.</i>	0.01Hz on change 64. 266.	60Hz *	0 to 400Hz ings. (Refer to	Set the frequency when the (gain).	input pulse is maximum			
386 Performing 192, 293 294	Frequency for zero input pulse Frequency for maximum input pulse IPM parameter initializati Refer to <i>Pr. 61 to Pr.</i> Refer to <i>Pr. 261 to Pr.</i>	0.01Hz on change 64. 266.	60Hz *	0 to 400Hz ings. (Refer to	Set the frequency when the (gain).	input pulse is maximum			
386 Performing 92, 293 294 isopera	Frequency for zero input pulse Frequency for maximum input pulse IPM parameter initializati Refer to <i>Pr. 61 to Pr.</i> Refer to <i>Pr. 261 to Pr.</i>	0.01Hz on change 64. 266.	60Hz *	0 to 400Hz ings. (Refer to	Set the frequency when the (gain).	input pulse is maximum function (Pr.296, ameter reading/ writing			0

 \mathbb{Z}

Parameter Related barameters	Name	Incre- ments	Initial Value	Range	Description		Parameter clear	All parameter clear
297	Password lock/ unlock	1	9999	1000 to 9998 (0 to 5) *	Register a 4-digit password Displays password unlock error count. (Reading only) (Valid when <i>Pr. 296</i> = "100" to "106, 199")	0	×	0
				9999 *	No password lock			
* "0 or 9999"	can be set in Pr. 297 at an	ny time alti	hough the	e setting is inv	valid (the displayed value does not change).			I
299	Refer to Pr. 57, Pr. 58							
	•		-		ting for the RS-485 communication with			
	•				r.343, Pr.539, Pr.549 to Pr.551)			
	ication operation a	and set	ting —	Control o	of parameter write by communication			
(Pr.342)		. .						
	•		-		RTU communication protocol			
•	ication protocol s		<i>,</i> ,	,				
	•				e — Operation command source and			
-		-		-	peration (Pr.338, Pr.339)			
	-	e and c	omma	nd source	- Selection of the NET operation mode			
	d source (Pr.550)							
	•	e and c	omma	nd source	e — Selection of the PU operation mode			
command	d source (Pr.551)						i	i
331	RS-485 communication station number	1	0	0 to 31 (0 to 247)	Set the inverter station number. (same specifications as <i>Pr. 117</i>) When "1" (Modbus-RTU protocol) is set in <i>Pr. 551</i> , the setting range within parenthesis is applied.	0	0*	0*
332	RS-485 communication speed	1	96	3, 6, 12, 24, 48, 96, 192, 384	Used to select the communication speed. (same specifications as <i>Pr. 118</i>)	0	0*	0*
333	RS-485 communication stop bit length	1	1	0, 1, 10, 11	Select stop bit length and data length. (same specifications as <i>Pr. 119</i>)	0	0*	0*
334	RS-485 communication parity check selection	1	2	0, 1, 2	Select the parity check specifications. (same specifications as <i>Pr. 120</i>)	0	0*	0*
335	RS-485 communication retry count	1	1	0 to 10, 9999	Set the permissible number of retries at occurrence of a data receive error. (same specifications as <i>Pr. 121</i>)	0	0*	0*
	RS-485			0	RS-485 communication can be made, but the inverter trips in the NET operation mode.			
336	communication check time interval	0.1s	0s	0.1 to 999.8s	Set the communication check time interval. (same specifications as <i>Pr. 122</i>)	0	0*	0*
				9999	No communication check (signal loss detection)			
337	RS-485 communication waiting time setting	1	9999	0 to 150ms, 9999	Set the waiting time between data transmission to the inverter and response. (same specifications as <i>Pr. 123</i>)	0	0*	0*
	Communication			0	Operation command source communication			
338	operation command source	1	0	1	Operation command source external	0	0*	0*
				0	Frequency command source communication			
	Communication			1	Frequency command source external		0*	
339		1	0	2	Frequency command source external (When there is no external input, the frequency command via communication is valid, and the frequency command from terminal 2 is invalid.)	0		0*

P	Related parameters	Name	Incre- ments	Initial Value	Range	Description		Parameter copy	Parameter clear	All parameter clear						
	341	RS-485 communication CR/ LF selection	1	1	0, 1, 2	Select presence/absence of CR/LF. (same specifications as <i>Pr. 124</i>)		0	0*	0*						
	342	Communication EEPROM write	1	0	0	Parameter values written by co to the EEPROM and RAM. Parameter values written by co		0	0	0						
		selection			1	to the RAM.										
	343	Communication error count	1	0	_	Display the number of commun Modbus-RTU communication. Read only. Displayed only whe selected.	-	×	×	×						
		Modbus-RTU 539 communication check time interval	/lodbus-RTU	Modbus-RTU	Modbus-RTU	Modbus-RTU	Modbus-RTU	Modbus-RTU			0	Modbus-RTU communication of inverter trips in the NET operation	,			
	539		0.1s	9999	0.1 to 999.8s	Set the communication check time interval. (same specifications as <i>Pr. 122</i>)		0	0*	0*						
					9999	No communication check (sign	al loss detection)									
	549	Protocol selection	1 0	0	0	Mitsubishi inverter (computer link) protocol	After setting change, reset (switch power off, then on) the inverter. The	0	0*	0*						
	549				1	Modbus-RTU protocol	setting change is reflected after a reset.		0	0						
					0	Communication option valid										
		NET mode			1	Inverter RS-485 terminal valid		0	0*							
	550	operation command source selection	1	9999	9999	Automatic recognition of the co Normally, the RS-485 terminal: Communication option is valid option is mounted.	s are valid.			0*						
					1	Select the RS-485 terminals as control source.	s the PU operation mode									
					2	Select the PU connector as the control source.	e PU operation mode									
	551	PU mode operation command source	1	9999	3	Select the USB connector as t control source.	he PU operation mode	0	0*	0*						
		selection			9999	USB automatic recognition Normally, the PU connector i when in the PU operation mo When the USB is connected the command source.	ode.									
	340	Refer to Pr. 79.														

Motor brake and stop operation — Orientation control (Pr.350 to Pr.366, Pr.369, Pr.393, Pr.396 to Pr.399)

350	Stop position command selection			0	Internal stop position command (Pr.356)			
		1	9999	1	External stop position command (FR-A7AX 16-bit data)	0	0	0
				9999	Orientation control invalid			
351	Orientation speed	0.01Hz	2Hz	0 to 30Hz	Decrease the motor speed to the set value when the orientation command (X22) is given.		0	0
352	Creep speed	0.01Hz	0.5Hz	0 to 10Hz	As soon as the current position pulse reaches the creep switchover position set in $Pr.353$ after the speed has reached the orientation speed, the speed decelerates down to the creep speed set in $Pr.352$.		0	0
353	Creep switchover position	1	511	0 to 16383			0	0
354	Position loop switchover position	1	96	0 to 8191	As soon as the current position pulse reaches the set position loop switchover position, control is changed to position loop.		0	0
355	DC injection brake start position	1	5	0 to 255	After changed to position loop, DC injection brake is applied and the motor stops as soon as the current position pulse reaches the set DC injection brake start position.	0	0	0

3

Magnetic flux

Vector

Parameter Barameters	Name	Incre- ments	Initial Value	Range	Description		Parameter copy	Parameter clear	All parameter clear									
356	Internal stop position command	1	0	0 to 16383	When "0" is set in <i>Pr: 350</i> , the internal position command is activated and the setting value of <i>Pr: 356</i> becomes a stop position.		0	0	0									
357	Orientation in- position zone	1	5	0 to 255	Set the in-position zone at a	stop of the orientation.	0	0	0									
358	Servo torque selection	1	1	0 to 13	Functions at orientation com	pletion can be selected.	0	0	0									
359	Encoder rotation direction	1	1	0	Encoder Clockwise direction as viewed from A is forward rotation Encoder Counter clockwise direction as viewed from A is forward rotation	Set the rotation direction according to the motor specification.	0	0	0									
360	360 16-bit data selection	16-bit data selection	16-bit data selection	60 16-bit data selection	16-bit data selection	0 16-bit data selectior	0 16-bit data selection) 16-bit data selection	60 16-bit data selectior	16-bit data selection 1	1	0	0	Speed command Position command 16 bit data is used as external position command as is. Set the stop position	When 1 is set in <i>Pr:350</i> and the option FR- A7AX is mounted, set a stop position using 16- bit data. Stop position command	0	0	0
				2 to 127	dividing up to 128 stop positions at regular intervals.	is input as binary regardless of the <i>Pr:304</i> setting.												
361	Position shift	1	0	0 to 16383	Shift the origin using a compensation value without changing the origin of the encoder. The stop position is a position obtained by adding the setting value of <i>Pr. 361</i> to the position command.		0	0	0									
362	Orientation position loop gain	0.1	1	0.1 to 10	When servo torque function is selected using $Pr.358$, output frequency for generating servo torque increases to the creep speed of $Pr.352$ gradually according to the slope set in $Pr.362$. Although the operation becomes faster when the value is increased, a machine may hunt, etc.		0	0	0									
363	Completion signal output delay time	0.1s	0.5s	0 to 5s	The orientation complete signal (ORA) is output delaying the set time after in-position zone is entered. Also, the signal turns off delaying the set time after in-position zone is out.		0	0	0									
364	Encoder stop check time	0.1s	0.5s	0 to 5s	Orientation fault signal (ORN encoder remains stopped for orientation completion in the orientation complete signal (signal is output when orienta again in the set time in the st output.	r the set time without state where no ORA) is output. ORM ition is not completed	0	0	0									
365	Orientation limit	1s	9999	0 to 60s	Measure the time taken after passing the creep switchover position and output the orientation fault signal (ORM) if orientation is not completed within the set time.		0	0	0									
				9999	Set to 120s.													

Parameter									<u>ب</u>		
Related	Name	Incre- ments	Initial Value	Range	Descrip	otion	Parameter copy	Parameter clear	All parameter clear		
366	Recheck time	0.1s	9999	0 to 5s	(X22) on after stopping the m control, the present position is set time elapses and the orie	Trining off the start signal with orientation command 22) on after stopping the motor by orientation ontrol, the present position is checked again after the et time elapses and the orientation complete signal ORA) or orientation fault signal (ORM) is output.		0	0		
369	Number of encoder	1	1024	9999 0 to 4096	Not checked. Set the number of pulses of Set the number of pulses be		0	0	0		
	pulses			0	Orientation is executed from direction.	. ,					
393 Vector	Orientation selection	1	0	1	Orientation is executed from direction.	the forward rotation	0	0	0		
				2	Orientation is executed from direction.	the reverse rotation					
396 Vector	Orientation speed gain (P term)	1	60	0 to 1000	Servo rigidity is (response le	vel during position	0	0	0		
397 Vector	Orientation speed integral time	0.001s	0.333s	0 to 20.0s	control loop) at orientation st	op can be adjusted.	0	0	0		
398 Vector	Orientation speed gain (D term)	0.1%	1%	0 to 100.0%	Lag/advance compensation	gain can be adjusted.	0	0	0		
399 Vector	Orientation deceleration ratio	1	20	0 to 1000	Make adjustment when the motor runs back at orientation stop or the orientation time is long.		0	0	0		
Special operation and frequency control — Encoder feedback control (Pr.359, Pr.367 to								V/F			
Pr.369)							Ma	gnetic I	flux		
359	359 Encoder rotation direction	rotation 1	1 1	0	Encoder Clockwise direction as viewed from A is forward rotation CCCW Encoder CCCW Counter clockwise direction as	Set the rotation direction according to the motor specification.	0	0	0		
					Counter clockwise direction as viewed from A is forward rotation	otation					
367	Speed feedback range	0.01Hz	9999	0 to 400Hz 9999	Set the range of speed feedt Encoder feedback control is		0	0	0		
368	Feedback gain	0.1	1	0 to 100	Set when the rotation is unst		0	0	0		
369	Number of encoder	1	1024	0 to 4096	Set the number of pulses of Set the number of pulses be	the encoder.	0	0	0		
Operation	setting at fault or	ccurrer	nce — (Overspee	d detection (Pr.374)		1		I		
374	Overspeed detection level	0.01Hz	140Hz *	0 to 400Hz	When the motor speed excee <i>Pr:374</i> during encoder feedba sensorless vector control, ver sensorless vector control, over and stops the inverter output.	ick control, Real ctor control, or PM er speed (E.OS) occurs	0	0	0		
* Performing	IPM parameter initialization	on change	s the sett	ings. (Refer to	D page 74)				•		
Operatior	peration setting at fault occurrence — Encoder signal cable breakage detection (Pr.376)							V/F Magnetic flux			
				0	Signal loss datastics is invelid			Vector			
376	Encoder signal loss detection enable/ disable selection	1	0	0	Signal loss detection is invalid Signal loss detection is valid When the cable of the encoder signal is broken during encoder feedback control, orientation control, or vector control, signal loss detection (E.ECT) is activated to stop the inverter output.		0	0	0		
380 to 383	Refer to Pr. 29.										
384 to 386	Refer to Pr. 291.										
	1										

Parameter Barameters	Name	Incre- ments	Initial Value	Range	Descrip	otion	Parameter copy	Parameter clear	All parameter clear	
	osition control — Position control setting (Pr.419 to Pr.430, Pr.464)									
				0	Simple position control function	by contact input				
419	Position command	1	0	1	Position command using pul	se train input (FR-A7AL)	0	0	0	
	source selection			2	Simple position pulse train con from the JOG terminal	nmand by pulse train input				
420	Command pulse scaling factor numerator	1	1	0 to 32767	Set the electronic gear.		0	0	0	
421	Command pulse scaling factor denominator	1	1	0 to 32767	Pr: 420 is a numerator and Pr:	421 is a denominator.	0	0	0	
422	Position loop gain	1s⁻¹	25s ⁻¹	0 to 150s ⁻¹	Set the gain of the position loc	pp.	0	0	0	
423	Position feed forward gain	1%	0%	0 to 100%	Function to cancel a delay cau the deviation counter.	sed by the droop pulses of	0	0	0	
424	Position command acceleration/ deceleration time constant	0.001s	0s	0 to 50s	Used when rotation has become unsmooth at a large electronic gear ratio (about 10 times or more) and low speed.		0	0	0	
425	Position feed forward command filter	0.001s	0s	0 to 5s	Enters the primary delay filter in response to the feed forward command.		0	0	0	
426	In-position width	1 pulse	100 pulse	0 to 32767 pulse	The in-position signal (Y36) turns on when the droop pulses become less than the setting.		0	0	0	
427	Excessive level error	1	40K	0 to 400K	A position error excessive (E.OD) occurs when the droop pulses exceed the setting. Function invalid		0	0	0	
				9999				<u> </u>	_	
428	Command pulse	1	0	0 to 2	Pulse train + rotation signal sign	Negative logic	0	0	0	
	selection			3 to 5	Pulse train + rotation signal sign	Positive logic				
429	Clear signal selection	1	1	0	Deviation counter is cleared at t when H level is changed to L lev	0 0 0	0	0	0	
	Selection			1	Deviation counter is cleared a	t L level				
					Description	FR-DU07 (FR-PU04/FR- PU07) display				
				0	The cumulative command	Lower 4(5) digits			0	
				1	pulse value is displayed.	Upper 4(5) digits				
430	Pulse monitor selection	1	9999	2	The cumulative feedback	Lower 4(5) digits	0	0		
				3	pulse value is displayed.	Upper 4(5) digits				
				4	The droop pulses are	Lower 4(5) digits				
				5	monitored.	Upper 4(5) digits				
	Digital pacifics			9999	Frequency monitor is displayed				-	
464	Digital position control sudden stop deceleration time	0.1s	0	0 to 360.0s	Set the time until the inverter stops when the forward rotation (reverse rotation) command is turned off with the position feed forward function.			0	С	
450	Refer to Pr. 71.									
451	Refer to Pr. 80, Pr. 81									
53 454	Refer to Pr. 80, Pr. 81									

 \square

Parameter Related barameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear						
Selection Pr.860)	and protection of	a moto	or — Se	econd mo	tor offline auto tuning (Pr.455 to Pr.463,		gnetic ensorle							
455	Second motor	0.01/	9999	0 to 500/ 0 to 3600A *1	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)	0	×	0						
	excitation current	0.1A *1		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, etc.) constants									
456	Rated second motor voltage	0.1V	200/ 400V *2	0 to 1000V	Set the rated voltage (V) of the second motor.	0	0	0						
457	Rated second motor frequency	0.01Hz	60Hz	10 to 120Hz	Set the rated frequency (Hz) of the second motor.	0	0	0						
458	Second motor	0.001Ω/ 0.01mΩ	9999	0 to 50Ω/ 0 to 400mΩ *1	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)	0	×	0						
	constant (R1)	*1		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, etc.) constants									
459	Second motor constant (R2)	0.001Ω /0.01mΩ	9999	0 to 50Ω/ 0 to 400mΩ *1	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)	0	×	0						
		*1		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, etc.) constants									
460	460 Second motor constant (L1)	0.001Ω (0.1mH)/ 0.1mΩ (0.01mH) *1	(0.1mH)/ 0.1mΩ	(0.1mH)/ 0.1mΩ	(0.1mH)/ 0.1mΩ	(0.1mH)/ 0.1mΩ	(0.1mH)/ 0.1mΩ	(0.1mH)/ 0.1mΩ	9999	0 to 50Ω (0 to 1000mH)/ 0 to 3600mΩ (0 to 400mH) *1	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)	0	×	0
				9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, etc.) constants									
461	Second motor constant (L2)	0.001Ω (0.1mH) /0.1mΩ (0.01mH)	(0.1mH)	9999	0 to 50Ω (0 to 1000mH)/ 0 to 3600mΩ (0 to 400mH) *1	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)	0	×	0					
		*1		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, etc.) constants	-								
462	Second motor constant (X)	0.01Ω (0.1%)/ 0.01mΩ (0.01%)	(0.1%)/ 0.01mΩ 9999 (Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)	0	×	0						
		*1		9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, etc.) constants									
463	Second motor auto tuning setting/status	1	0	0, 1, 101	Set the tuning mode of the second motor. (same as <i>Pr. 96</i>)	0	×	0						
860	Second motor torque current	0.01/ 0.1A *1	9999	0 to 500/ 0 to 3600A *1	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)	0	×	0						
				9999	Use the Mitsubishi motor (SF-JR, SF-HRCA, etc.) constants									
	ements and setting range al values differ according t				apacity. (55K or lower/75K or higher)									
464 Refer to <i>Pr. 419 to Pr. 430</i> .														

 \mathbb{Z}

3

Parameter List

Related parameters	Name	Incre- ments	Initial Value	Range	Descri	ption	Parameter copy	Parameter clear	All parameter clear
	control — Simple	positio	n feed	function	(Pr.465 to Pr.494)			Vector	
					Selection Method	Position Feed Speed		_	
465	First position feed amount lower 4 digits	1	0	0 to 9999	-RH	High speed	0	0	0
466	First position feed amount upper 4 digits	1	0	0 to 9999		(Pr.4)	0	0	0
467	Second position feed amount lower 4 digits	1	0	0 to 9999	-RM	Middle speed (Pr.5)	0	0	0
468	Second position feed amount upper 4 digits	1	0	0 to 9999		iniquie speed (Fr.5)	0	0	0
469	Third position feed amount lower 4 digits	1	0	0 to 9999	-RL	Low speed	0	0	0
470	Third position feed amount upper 4 digits	1	0	0 to 9999		(Pr.6)	0	0	0
471	Fourth position feed amount lower 4 digits	1	0	0 to 9999	-RM, RL	Speed 4 (<i>Pr.24</i>)	0	0	0
472	Fourth position feed amount upper 4 digits	1	0	0 to 9999		opeeu - (17.27)	0	0	0
473	Fifth position feed amount lower 4 digits	1	0	0 to 9999	-RH, RL	Speed 5 (<i>Pr.25</i>)	0	0	0
474	Fifth position feed amount upper 4 digits	1	0	0 to 9999		Speed 5 (11.25)	0	0	0
475	Sixth position feed amount lower 4 digits	1	0	0 to 9999	-RH, RM	Speed 6 (<i>Pr.26</i>)	0	0	0
476	Sixth position feed amount upper 4 digits	1	0	0 to 9999		Speed 0 (<i>Fr.20)</i>	0	0	0
477	Seventh position feed amount lower 4 digits	1	0	0 to 9999	RH, RM, RL	Speed 7 (Pr.27)	0	0	0
478	Seventh position feed amount upper 4 digits	1	0	0 to 9999		Speeu 7 (17.27)	0	0	0
479	Eighth position feed amount lower 4 digits	1	0	0 to 9999	-REX	Speed 9 (Pr 222)	0	0	0
480	Eighth position feed amount upper 4 digits	1	0	0 to 9999		Speed 8 (Pr.232)	0	0	0
481	Ninth position feed amount lower 4 digits	1	0	0 to 9999		Speed Q (Pr 222)	0	0	0
482	Ninth position feed amount upper 4 digits	1	0	0 to 9999	-REX, RL	Speed 9 (Pr.233)	0	0	0

Parameter									J.
Related	Name	Incre- ments	Initial Value	Range	Descrip	tion	Parameter copy	Parameter clear	All parameter clear
483	Tenth position feed amount lower 4 digits	1	0	0 to 9999	REX, RM	Speed 10 (Pr.234)	0	0	0
484	Tenth position feed amount upper 4 digits	1	0	0 to 9999			0	0	0
485	Eleventh position feed amount lower 4 digits	1	0	0 to 9999	REX, RM, RL	Speed 11 (Pr.235)	0	0	0
486	Eleventh position feed amount upper 4 digits	1	0	0 to 9999		Speed 11 (17.255)	0	0	0
487	Twelfth position feed amount lower 4 digits	1	0	0 to 9999		Speed 12 (B. 22()	0	0	0
488	Twelfth position feed amount upper 4 digits	1	0	0 to 9999	REX, RH	Speed 12 (Pr:236)	0	0	0
489	Thirteenth position feed amount lower 4 digits	1	0	0 to 9999		Speed 12 (Br 227)	0	0	0
490	Thirteenth position feed amount upper 4 digits	1	0	0 to 9999	REX, RH, RL	Speed 13 (Pr:237)	0	0	0
491	Fourteenth position feed amount lower 4 digits	1	0	0 to 9999		Or and 44 (D. 220)	0	0	0
492	Fourteenth position feed amount upper 4 digits	1	0	0 to 9999	REX, RH, RM	Speed 14 (Pr:238)	0	0	0
493	Fifteenth position feed amount lower 4 digits	1	0	0 to 9999		0	0	0	0
494	Fifteenth position feed amount upper 4 digits	1	0	0 to 9999	REX, RH, RM, RL	Speed 15 (Pr:239)	0	0	0
Function	assignment of ext	ernal te	ermina	I and con	trol — Remote output	function (REM			
signal) (P	r.495 to Pr.497)								
				0	Remote output data clear at powering off Remote output data held at	Remote output data is cleared during an			
495	Remote output selection	1	0	1	powering off	inverter reset	0	0	0
	Selection			10	Remote output data clear at powering off	Remote output data is			
				11	Remote output data held at powering off	retained during an inverter reset			
496	Remote output data 1	1	0	0 to 4095	Output terminal can be switc	hed on and off	×	×	×
497	Remote output data 2	1	0	0 to 4095	•		×	×	×
Useful fu	nctions — Mainten	ance o	f parts	(Pr.503, I					
503	Maintenance timer	1	0	0 (1 to 9998)	Display the cumulative energy inverter in 100h increments. (Reading only) When <i>Pr. 503</i> = "1 to 9998", w of "0" clears the cumulative et (Writing is disabled when <i>Pr</i> :	writing the setting value energization time.	×	×	×

	ſ				5	5	er			
Name	Incre- ments	Initial Value	Range	Description	Parametel copy	Parametei clear	All parameter clear			
Maintenance timer	1	9999	0 to 9998	Set the time taken until when the maintenance timer alarm output signal (Y95) is output.	0	×	0			
		<u> </u>	9999	No function						
Refer to Pr. 29.										
	-									
cation operation a	and set	ting —	Inverter s	etup using USB communication (Pr.547,						
USB communication station number	1	0	0 to 31	Specify the inverter station number.	0	0*	0*			
USB communication check time interval	0.1s	9999	0 0.1 to 999.8s	USB communication is enabled. However, the inverter will come to an alarm stop (E. USB) if operation is changed to PU operation mode. Set the interval of communication check time.	0	0*	0*			
			9999	No communication check						
Refer to Pr. 331 to Pr.	339, Pr.	341 to P	r. 343.							
unctions — Current average value monitor signal (Pr.555 to Pr.557)										
Current average time	0.1s	1s	0.1 to 1.0s	Set the time taken to average the current during start pulse output (1s).	0	0	0			
Data output mask time	0.1s	0s	0.0 to 20.0s	Set the time for not obtaining (mask) transient state data.	0	0	0			
Current average value monitor signal output reference current	0.01/ 0.1A *1	Rated inverter current *2	0 to 500/ 0 to 3600A *1	Set the reference (100%) for outputting the signal of the current average value.	0	0	0			
Refer to Pr. 52, Pr. 54	!									
Refer to Pr. 80, Pr. 81										
Refer to Pr. 13.										
Refer to Pr. 95.										
Refer to Pr. 127 to Pr.	. 134.									
Refer to Pr. 57, Pr. 58	} .									
Refer to Pr. 882 to Pr.	886.									
••••	•	ent) of t	the motor	- Low-speed range torque						
istic selection (Pr.	788)									
Low-speed range			0	Disables the low-speed range torque characteristic (current synchronization operation).						
characteristics selection	1	9999	9999	Enables the low-speed range torque characteristic (high frequency superposition control)	0	0	0			
Refer to Pr. 7, Pr. 8.										
Refer to Pr. 80, Pr. 81	Refer to Pr. 80, Pr. 81.									
Defente D. 10 / D.	12									
Refer to Pr. 10 to Pr. 1	12.									
	Maintenance timer alarm output set time Refer to <i>Pr</i> : 37. Refer to <i>Pr</i> : 29. Refer to <i>Pr</i> : 331 to <i>Pr</i> : Cation operation a USB communication station number USB communication check time interval Refer to <i>Pr</i> : 331 to <i>Pr</i> : Interval Refer to <i>Pr</i> : 331 to <i>Pr</i> : Interval Current average time Data output mask time Current average value monitor signal output reference current ements and setting range ng IPM parameter initializ Refer to <i>Pr</i> : 52, <i>Pr</i> : 54 Refer to <i>Pr</i> : 95. Refer to <i>Pr</i> : 82 to <i>Pr</i> : Gurent average torque characteristics selection Refer to <i>Pr</i> : 82 to <i>Pr</i> : 64 Cate of the output torque istic selection (Pr : 64 Refer to <i>Pr</i> : 7, <i>Pr</i> : 8. Refer to <i>Pr</i> : 7, <i>Pr</i> : 8.	NamementsMaintenance timer alarm output set time1Refer to Pr. 37.Refer to Pr. 37.Refer to Pr. 29.Refer to Pr. 331 to Pr. 339, Pr.Cation operation and set1USB communication station number1USB communication check time interval0.1sRefer to Pr. 331 to Pr. 339, Pr.Current average time0.1sCurrent average value monitor signal output reference current0.01/Output reference current0.01/Refer to Pr. 52, Pr. 54.Refer to Pr. 52, Pr. 54.Refer to Pr. 127 to Pr. 134.Refer to Pr. 57, Pr. 58.Refer to Pr. 57, Pr. 58.Refer to Pr. 57, Pr. 58.Refer to Pr. 882 to Pr. 886.Refer to Pr. 82 to Pr. 84.Current average value characteristics selection1Refer to Pr. 82 to Pr. 84.1	NamementsValueMaintenance timer alarm output set time19999Refer to $Pr. 37.$ Refer to $Pr. 37.$ Refer to $Pr. 29.$ Refer to $Pr. 331$ to $Pr. 339, Pr. 341$ to $Pr.$ Cation operation and setting10USB communication station number10USB communication check time interval0.1s9999Refer to $Pr. 331$ to $Pr. 339, Pr. 341$ to $Pr.$ 9999Refer to $Pr. 331$ to $Pr. 339, Pr. 341$ to $Pr.$ numberCurrent average time0.1s1sData output mask value monitor signal output reference current0.01/ 0.1A ~1Rated inverter current 2 Refer to $Pr. 52, Pr. 54.$ Refer to $Pr. 52, Pr. 54.$ Refer to $Pr. 95.$ Refer to $Pr. 95.$ Refer to $Pr. 95.$ Refer to $Pr. 95.$ Refer to $Pr. 57, Pr. 58.$ Refer to $Pr. 57, Pr. 58.$ Refer to $Pr. 57, Pr. 58.$ Refer to $Pr. 82$ to $Pr. 84.$ Ite output torque characteristics selection19999Low-speed range torque characteristics selection19999Refer to $Pr. 7, Pr. 8.$ 19999	NamementsValueRangeMaintenance timer alarm output set time199990 to 9998Refer to Pr. 37.Refer to Pr. 37.Refer to Pr. 37.Refer to Pr. 29.Refer to Pr. 331 to Pr. 339, Pr. 341 to Pr. 343.Cation operation100 to 31USB communication check time interval100 to 31USB communication check time interval0.1s00 to 31USB communication check time interval0.1s00 to 0.0	NamementsValueRangeDescriptionMaintenance timer199990 to 9998Set the time taken until when the maintenance timer alarm output signal (Y95) is output. 9999No functionRefer to Pr. 37.Refer to Pr. 331 to Pr. 339. Pr. 341 to Pr. 343.No functionCation operation and setting — Inverter setup using USB communication (Pr.547, Operation is enabled. However, the inverter will come to an alarm stop (E. USB) if operation is changed to PU operation mode. 0.1s0USB communication check time interval100 to 31Specify the inverter station number.USB communication check time interval1.1s00 to 31Specify the inverter station number.USB communication check time interval0.1s9999No communication check time.0.1s0.1s00 to 310. Specify the inverter station number.Current average value monitoring time0.1s0.1 to 1.0sSet the time taken to average the current during start upse output (1s).Data output mask value monitoring usite on the stated carding to the inverter capacity. (55K or lower/75K or higher) memts and setting range differ according to the inverter capacity. (55K or lower/75K or higher) mg IPM parameter intellization changes the settings. (Refer to Pr. 53. Pr. 54.Refer to Pr. 53. Pr. 54.Refer to Pr. 53. Pr. 54.Refer to Pr. 53. Pr. 54.9999Refer to Pr. 53. Pr. 54.Refer to Pr. 53. Pr. 54.	Name ments Value Range Description Image of the second	Maintenance timer alarm output set timeImage: set the time taken until when the maintenance timer alarm output signal (Y95) is output. 0 or weight of Pr . 37.Refer to Pr . 37.Image: set time taken until when the maintenance timer alarm output signal (Y95) is output.Refer to Pr . 37.Image: set time taken until when the maintenance timer alarm output signal (Y95) is output.Refer to Pr . 37.Image: set time taken until when the maintenance timer alarm output signal (Y95) is output.Refer to Pr . 37.Image: set time taken until when the maintenance timer alarm output signal (Y95) is output.USB communication duek time interval100 to 31Set the interval of communication number.000.1s99990USB communication check time. 9999 No communication check time. 9999 No communication check time. 9999 No communication check time. 9999 No communication check time.0Current average value monitor signal output reference 0.1s1s0.1 to 1.0sSet the time taken to average the current during start pulse output (1s).0Data output mask time0.1s0.1 to 1.0sSet the interval of communication distart pulse output (1s).00Data output mask time0.1s0.1 to 1.0sSet the reference (10%) for outputting the signal of to 0.00% or to 0.00%.00Current average value monitor signal output reference to Pr . 53.Refer to Pr . 53.0Refer to Pr . 53.			

Parameter									-	
Related	Name	Incre- ments	Initial Value	Range	Description		Parameter copy	Parameter clear	All parameter clear	
Torque c	ontrol — Torque c	omman	d sour	ce select	on (Pr.804 to Pr.806)			nsorle Vector		
				0	Torque command by terminal 1 analog in	put				
				1	Torque command by parameter <i>Pr.805</i> or <i>Pr.806</i> setting (-400% to 400%)					
004	Torque command			2	Torque command using pulse train input	(FR-A7AL)	0			
804	source selection	1	0	3	Torque command by using CC-Link (FR-	A7NC)	0	0	0	
				4	Digital input from the option (FR-A7AX)					
				5 6	Torque command by using CC-Link (FR-	A7NC)				
805	Torque command value (RAM)	1%	1000%	600 to 1400%	Digital setting of the torque command can by setting <i>Pr. 805</i> or <i>Pr. 806</i> . (Setting from		×	0	0	
806	Torque command value (RAM,EEPROM)	1%	1000%	600 to 1400%	communication option, etc. can be made In this case, set the speed limit value to a appropriate value to prevent overspeed.		0	0	0	
Torque c	ontrol — Speed lir	nit (Pr.8	807 to I	Pr.809)					_	
				0	Use the speed command value during sp as speed limit.	eed control		O Nsorless Vector O O		
				1	According to <i>Pr. 808</i> and <i>Pr. 809</i> , set the s forward and reverse rotation directions in					
807	Speed limit selection	1	0	2	The analog voltage of the terminal 1 input make speed limit. For 0 to 10V input, set rotation speed limit. (The reverse rotation is <i>Pr. 1 Maximum frequency</i>) For -10 to 0V input, set the reverse rotation limit. (The forward rotation speed limit is <i>Maximum frequency</i> .) The maximum freque the forward and reverse rotations is <i>Pr. 1</i> <i>frequency</i> .	the forward speed limit on speed <i>Pr: 1</i> ency of both	0	0	0	
808	Forward rotation speed limit	0.01Hz	60Hz	0 to 120Hz	Set the speed limit level during forward re (valid when $Pr. 807 = 1$)	otation.	0	0	0	
809	Reverse rotation	0.01Hz	9999	0 to 120Hz	Set the speed limit level during reverse re (valid when $Pr. 807 = 1$)	otation.	0	0	0	
	speed limit			9999	As set in Pr. 808.		<u> </u>	<u> </u>		
810	Refer to Pr. 22.									
	Refer to <i>Pr. 22</i> and <i>Pr. 37</i> .									
811										
811 812 to 817	Refer to <i>Pr. 22</i> and <i>P</i> Refer to <i>Pr. 22</i> .									
812 to 817	Refer to <i>Pr. 22.</i>		ng sel	ection (Pr	.818, Pr.819)			nsorle Vector		
812 to 817	Refer to <i>Pr. 22</i> .		ng sel	ection (Pr	.818, Pr.819) 1 : Slow response ↓ 15 : Fast response			Vector		
812 to 817 Gain adju	Refer to <i>Pr. 22.</i> ustment — Easy g Easy gain tuning response level	ain tuni	-		1 : Slow response ↓ 15 : Fast response No tuning			Vector		
812 to 817 Gain adju	Refer to <i>Pr. 22.</i> ustment — Easy g Easy gain tuning response level	ain tuni	-	1 to 15	1 : Slow response ↓ 15 : Fast response	ly set from		Vector		

 \mathbb{Z}

	Related parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear
)a	in adju	istment — Proport	ional g	ain se	tting for s	peed loops(Pr.820, Pr.830)		ensorie Vector PM	
	820	Speed control P gain 1	1%	60% *	0 to 1000%	Set the proportional gain for speed control. (Increasing the value improves trackability in response to a speed command change and reduces speed variation with disturbance.)	0	0	0
	830	Speed control P gain 2	1%	9999	0 to 1000% 9999	Second function of <i>Pr</i> : 820 (valid when RT signal is on) No function	0	0	0
P	erformina	IPM parameter initialization	on change	s the set					
	in adj u 821	stment — Speed of Speed control integral time 1	0.001s	integra		tting (Pr.821, Pr.822) Set the integral time during speed control. (Decrease the value to shorten the time taken for returning to the original speed if speed variation with disturbance		Vector P M	
	831	Speed control integral time 2	0.001s	9999	0 to 20s 9999	occurs.) Second function of <i>Pr. 821</i> (valid when the RT terminal is on) No function	0	0	0
	822	Refer to Pr. 74.				I			
a	eed/to	raue detection filte	er — Sp	eed de	etection fi	Iter function (Pr.823, Pr.833)	C	Vector	,
-		Speed detection							
	823	filter 1	0.001s	0.001s	0 to 0.1s	Set the primary delay filter for the speed feedback.	0	0	0
	823 ⁸³³	-	0.001s 0.001s	0.001s 9999	0 to 0.1s	Second function of <i>Pr</i> : 823 (valid when RT signal is on)	0	0	С
	833	filter 1 Speed detection filter 2	0.001s	9999	0 to 0.1s 9999	Second function of <i>Pr. 823</i> (valid when RT signal is	0		0
Ga	833	filter 1 Speed detection filter 2	0.001s	9999	0 to 0.1s 9999	Second function of <i>Pr. 823</i> (valid when RT signal is on) No function	0	O O ensorie Vector	
Ga	833 in adju	filter 1 Speed detection filter 2 stment — Current Torque control P gain 1 (current loop proportional gain) Torque control P	0.001s	9999	0 to 0.1s 9999 ional gair 0 to 200% 0 to 200%	Second function of <i>Pr. 823</i> (valid when RT signal is on) No function Setting (Pr.824, Pr.834) Set the proportional gain for the current control of the q and d axes. (Increasing the value improves trackability in response to a current command change and reduces current variation with disturbance.) Second function of <i>Pr. 824</i> (valid when the RT terminal is on)	0 0 5 0	0 ensorle Vector	
Ga	833 in adju 824	filter 1 Speed detection filter 2 Istment — Current Torque control P gain 1 (current loop proportional gain)	0.001s	9999 roport	0 to 0.1s 9999 ional gair 0 to 200%	Second function of <i>Pr. 823</i> (valid when RT signal is on) No function Setting (Pr.824 , Pr.834) Set the proportional gain for the current control of the q and d axes. (Increasing the value improves trackability in response to a current command change and reduces current variation with disturbance.) Second function of <i>Pr. 824</i> (valid when the RT		O ensorle Vector P M	
)))	833 in adju 824 834	filter 1 Speed detection filter 2 Istment — Current Torque control P gain 1 (current loop proportional gain) Torque control P gain 2	0.001s : loop p 1%	9999 roport 100% 9999	0 to 0.1s 9999 ional gair 0 to 200% 0 to 200% 9999	Second function of <i>Pr. 823</i> (valid when RT signal is on) No function Setting (Pr.824, Pr.834) Set the proportional gain for the current control of the q and d axes. (Increasing the value improves trackability in response to a current command change and reduces current variation with disturbance.) Second function of <i>Pr. 824</i> (valid when the RT terminal is on)		O ensorle Vector P M	
)))))	833 in adju 824 834	filter 1 Speed detection filter 2 Istment — Current Torque control P gain 1 (current loop proportional gain) Torque control P gain 2	0.001s : loop p 1%	9999 roport 100% 9999	0 to 0.1s 9999 ional gair 0 to 200% 0 to 200% 9999	Second function of <i>Pr. 823</i> (valid when RT signal is on) No function Setting (Pr.824, Pr.834) Set the proportional gain for the current control of the q and d axes. (Increasing the value improves trackability in response to a current command change and reduces current variation with disturbance.) Second function of <i>Pr. 824</i> (valid when the RT terminal is on) No function		O ensorle Vector P M O O	
)))))	833 in adju 824 834 in adju	filter 1 Speed detection filter 2 Istment — Current Torque control P gain 1 (current loop proportional gain) Torque control P gain 2 Istment — Current Torque control integral time 1 (current loop	0.001s : loop p 1% 1% : contro	9999 roport 100% 9999 ol integ	0 to 0.1s 9999 ional gair 0 to 200% 0 to 200% 9999 gral time s	Second function of <i>Pr. 823</i> (valid when RT signal is on) No function setting (Pr.824, Pr.834) Set the proportional gain for the current control of the q and d axes. (Increasing the value improves trackability in response to a current command change and reduces current variation with disturbance.) Second function of <i>Pr. 824</i> (valid when the RT terminal is on) No function etting (Pr.825, Pr.835) Set the integral time for the current control of the q and d axes. (Decreasing the value shortens the time taken to return to the original torque if current variation with disturbance occurs.) Second function of <i>Pr. 825</i> (valid when the RT signal is on)		O ensorle Vector P M O O ensorle Vector P M	
 ∋a	833 in adju 824 834 in adju 825 835	filter 1 Speed detection filter 2 Istment — Current Torque control P gain 1 (current loop proportional gain) Torque control P gain 2 Istment — Current Torque control integral time 1 (current loop integral time) Torque control	0.001s i loop p 1% 1% contro 0.1ms 0.1ms	99999 roport 100% 99999 ol integ 5ms * 99999	0 to 0.1s 9999 ional gair 0 to 200% 0 to 200% 9999 ral time s 0 to 500ms 9999	Second function of <i>Pr. 823</i> (valid when RT signal is on) No function setting (Pr.824, Pr.834) Set the proportional gain for the current control of the q and d axes. (Increasing the value improves trackability in response to a current command change and reduces current variation with disturbance.) Second function of <i>Pr. 824</i> (valid when the RT terminal is on) No function etting (Pr.825, Pr.835) Set the integral time for the current control of the q and d axes. (Decreasing the value shortens the time taken to return to the original torque if current variation with disturbance occurs.) Second function of <i>Pr. 825</i> (valid when the RT signal is on) No function		O ensorle Vector P M O o ensorle Vector P M	

 $\overline{}$

arameter										
Related	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter		
	rque detection filte	er — To	rque d	etection f	ilter function (Pr.827, Pr.837)		ensorie Vector P-M			
827	Torque detection filter 1	0.001s	0s	0 to 0.1s	Set the time constant of the primary delay filter relative to the torque feedback signal.	0	0	0		
837	Torque detection filter 2	0.001s	9999	0 to 0.1s	Second function of <i>Pr: 827</i> (valid when the RT signal is on)	0	0	С		
Deed co Pr.881)	-	d forwa	rd con	9999 trol, mode	No function el adaptive speed control (Pr.828, Pr.877		Sensorless Vector			
828	Model speed control gain	1%	60%	0 to 1000%	Set the gain for model speed controller.	0	0	С		
	Speed feed forward			0	Normal speed control is exercised					
877	control/model	1	0	1	Speed feed forward control is exercised.	0	0	C		
	adaptive speed control selection		-	2	Model adaptive speed control is enabled.					
878	Speed feed forward filter	0.01s	0s	0 to 1s	Set the primary delay filter for the speed feed forward result calculated using the speed command and load inertia ratio.	0	0	C		
879	Speed feed forward torque limit	0.1%	150%	0 to 400%	Limits the maximum value of the speed feed forward torque.	0	0	C		
880	Load inertia ratio	0.1	7	0 to 200 times	Set the load inertia ratio. Inertia ratio found by easy gain turning.	0	×	C		
881	Speed feed forward gain	1%	0%	0 to 1000%	Set the feed forward calculation result as a gain.	0	0	C		
830	Refer to Pr. 820.									
831	Refer to Pr. 821.									
832	Refer to Pr. 74.									
833	Refer to Pr. 823.									
834	Refer to Pr. 824.									
835	Refer to Pr. 825.									
836	Refer to Pr. 74.									
	Defente D 027									
837	Refer to Pr. 827.									
	ntrol — Torque bia	as func	tion (P	r.840 to P	r.848)		Vector			
		as func	tion (P	r.840 to P	r.848) Set the contact signal (X42, X43) based-torque bias amount using <i>Pr.841</i> to <i>Pr.843</i> .		Vector			
	ntrol — Torque bia	as func	tion (P	İ	Set the contact signal (X42, X43) based-torque bias		Vector			
		as func	tion (P 9999	0	Set the contact signal (X42, X43) based-torque bias amount using <i>Pr</i> .841 to <i>Pr</i> .843. Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (forward rotation) Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (reverse rotation)	0	Vector			
beed co	ntrol — Torque bia			0 1 2 3	Set the contact signal (X42, X43) based-torque bias amount using <i>Pr.841</i> to <i>Pr.843</i> . Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (forward rotation) Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (reverse rotation) The terminal 1-based torque bias amount can be set automatically in <i>C16</i> to <i>C19</i> , <i>Pr.846</i> according to the load.					
beed co	ntrol — Torque bia			0 1 2 3 99999	Set the contact signal (X42, X43) based-torque bias amount using <i>Pr.841</i> to <i>Pr.843</i> . Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (forward rotation) Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (reverse rotation) The terminal 1-based torque bias amount can be set automatically in <i>C16</i> to <i>C19</i> , <i>Pr.846</i> according to the					
beed co	ntrol — Torque bia	1	9999	0 1 2 3 9999 600 to 999%	Set the contact signal (X42, X43) based-torque bias amount using <i>Pr.841</i> to <i>Pr.843</i> . Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (forward rotation) Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (reverse rotation) The terminal 1-based torque bias amount can be set automatically in <i>C16</i> to <i>C19</i> , <i>Pr.846</i> according to the load.	0	0			
840 841 842	ntrol — Torque bias Torque bias selection Torque bias 1 Torque bias 2			0 1 2 3 9999 600 to 999% 1000 to 1400%	Set the contact signal (X42, X43) based-torque bias amount using <i>Pr.841</i> to <i>Pr.843</i> . Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (forward rotation) Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (reverse rotation) The terminal 1-based torque bias amount can be set automatically in <i>C16</i> to <i>C19</i> , <i>Pr.846</i> according to the load. Without torque bias, rated torque 100% Negative torque bias amount (-400% to -1%) Positive torque bias amount (0% to 400%)					
840 841	ntrol — Torque bias Torque bias selection Torque bias 1	1	9999	0 1 2 3 9999 600 to 999% 1000 to	Set the contact signal (X42, X43) based-torque bias amount using <i>Pr.841</i> to <i>Pr.843</i> . Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (forward rotation) Set the terminal 1-based torque bias amount as desired in <i>C16</i> to <i>C19</i> . (reverse rotation) The terminal 1-based torque bias amount can be set automatically in <i>C16</i> to <i>C19</i> , <i>Pr.846</i> according to the load. Without torque bias, rated torque 100% Negative torque bias amount (-400% to -1%)	0	0	(

 \mathbb{Z}

3

Pa	rameter ප ^{සු}	Name	Incre-	Initial	Panga	Description	neter Þy	neter ar	parameter
	Related parameters	Name	ments	Value	Range	Description	Parameter copy	Parameter clear	All parame
	845	Torque bias operation time	0.01s	9999	0 to 5s	Time for maintaining torque equivalent to the torque bias amount.	0	0	0
					9999	Same operation as when 0s is set.			
	846	Torque bias balance	0.1V	9999	0 to 10V	Set the voltage under balanced load.	0	0	0
		compensation			9999	Same operation as when 0V is set.			
	847	Fall-time torque	1%	9999	0 to 400%	Set the bias value of the torque command.	0	0	C
		bias terminal 1 bias			9999	Same as at a rise time (C16, C17).			_
	848	Fall-time torque bias terminal 1 gain	1%	9999	0 to 400% 9999	Set the gain value of the torque command. Same as at a rise time (<i>C18</i> , <i>C19</i>).	0	0	С
	849	Refer to Pr. 74.							
	850	Refer to Pr. 10 to Pr.	12.						
	853	Refer to <i>Pr. 285</i> .							
	000						_		
20	sition o	control — Excitatio	on ratio) (Pr.85	54)			ensorie Vector	
	854	Excitation ratio	1%	100%	0 to 100%	Set the excitation ratio under no load.	0	0	
-r	anonc	v and torque setti	na hy a	nalog	input — F	Function assignment of analog input	1		<u> </u>
	•	Pr.858, Pr.868)	ing by c	inulog	input i	anotion assignment of analog input			
er	iiiiiai (F1.030, F1.000)					1		T
					0	Frequency/speed command			
	858	Terminal 4 function	1	0	1	Magnetic flux command	0	×	C
		assignment			4	Stall prevention/torque limit			
					9999	No function			
					0	Frequency setting auxiliary			
					1	Magnetic flux command			
					2	Regenerative torque limit			
	868	Terminal 1 function	1	0	3	Torque command	0	×	C
		assignment			4	Stall prevention/torque limit/torque command			
					5	Forward/reverse rotation speed limit			
					6	Torque bias			
					9999	No function			
	859	Refer to Pr. 82 to Pr.	84.						
	860	Refer to Pr. 455 to Pr.	463.						
							Se	ensorie	ss
Sp	eed co	ntrol — Notch filte	er (Pr.86	62, Pr.8	363)			Vector	_
•			•		•			PM	
						You can use the machine resonance speed to make			Γ
	862	Notch filter time constant	1	0	0 to 60	this setting to reduce the response level of the machine resonance frequency band, avoiding machine resonance.	0	0	С
					0	Deep (-40dB)			1
	000			-	1	↑ (-14dB)		_	_
	863	Notch filter depth	1	0	2	↓ (-8dB)	0	0	C
					3	Shallow (-4dB)	-		
De	tection	of output frequer	ncy, cur	rent, a	nd torque	e — Torque detection (Pr.864)		ensorie Vector	_
	864	Torque detection	0.1%	150%	0 to 400%	You can make setting to output a signal if the motor torque exceeds the predetermined value.	0	0	
	865	Refer to Pr. 41 to Pr.	43.		-	-	•	•	•
	-								
	866	Refer to Pr 55 Pr 56	í						
	866 867	Refer to <i>Pr. 55, Pr. 56</i> Refer to <i>Pr. 52, Pr. 54</i>							

Parameter						Ъ	J.	ter		
Related parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear		
868	Refer to Pr. 858.				•					
870	Refer to Pr. 41 to Pr. 4	43.								
872	Refer to Pr. 251.									
Speed co	ntrol — Frequency	y limit (Pr.873)	_		Vecto	r		
873	Speed limit	0.01Hz	20Hz	0 to 120Hz	Frequency is limited at the set frequency + <i>Pr.873</i> during vector control.	0	0	0		
874	Refer to Pr. 22.			•						
Operation	setting at fault o	ccurrer	nce — I	Fault defin	nition (Pr.875)					
				0	At occurrence of any fault, output is shut off immediately. At this time, the fault output also turns on.					
875	Fault definition	1	0	1	At occurrence of external thermal operation (OHT), electronic thermal relay function (THM) or PTC thermistor function (PTC) fault, the motor is decelerated to a stop. At occurrence of a fault other than OHT, THM and PTC, inverter trips immediately. Same operation as when "0" is set is performed under position control.	0	0	0		
877 to 881 Refer to <i>Pr. 828</i> .										
Operation	setting at fault o	ccurrer	nce — I	Regenera	tion avoidance function (Pr.882 to					
Pr.886, Pr	.665)									
Accelerat	ion/deceleration t	ime/pat	tern ad	djustment	- Regeneration avoidance function					
	Pr.886, Pr.665)									
	Regeneration			0	Regeneration avoidance function invalid					
882	avoidance	1	0	1	Regeneration avoidance function is always valid	0		0		
	operation selection			2	Regeneration avoidance function is valid only at constant speed					
883	Regeneration avoidance operation level	0.1V	380 / 760VDC *1	300 to 800V	Set the bus voltage level at which regeneration avoidance operates. When the bus voltage level is set to low, overvoltage error will be less apt to occur. However, the actual deceleration time increases. The set value must be higher than the power supply voltage $\times \sqrt{2}$	0	0	0		
	Regeneration			0	Regeneration avoidance by bus voltage change ratio is invalid					
884	avoidance at deceleration detection sensitivity	1	0	1 to 5	Set sensitivity to detect the bus voltage change. Setting: $1 \rightarrow 5$ Detection sensitivity: Low \rightarrow High	0	0	0		
885	Regeneration avoidance	0.01Hz	6Hz *2	0 to 30Hz	Set the limit value of frequency which rises at activation of regeneration avoidance function.	0	0	0		
	compensation frequency limit value	0.01112	0112 2	9999	Frequency limit invalid					
886	Regeneration avoidance voltage gain	0.1%	100%	0 to 200%	Adjust responsiveness at activation of regeneration avoidance. Setting a larger value in <i>Pr.886</i> will improve responsiveness to the bus voltage change. However,	0	0	0		
665	Regeneration avoidance frequency gain	0.1%	100%	0 to 200%	the output frequency could become unstable. When vibration is not suppressed by decreasing the $Pr.886$ setting, set a smaller value in $Pr.665$.	0	0	0		
	al values differ according f ng IPM parameter initializ									
	nctions — Free pa		•	•	10 .					
888	Free parameter 1	1	9999	0 to 9999	Parameters you can use for your own purposes.	0	×	×		
889	Free parameter 2	1	9999	0 to 9999	Used for maintenance, management, etc. by setting a unique number to each inverter when multiple inverters are used. Data is held even if the inverter power is turned off.	0	×	×		
					Bata is note even if the inverter power is turned off.					

 \mathbb{Z}

Parameter List

Related parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear
Useful fu		-	peratio	on) — Hov	v much energy can be saved (energy		-	
saving m	onitor) (Pr.891 to F	Pr.899)		-				
891	Cumulative power monitor digit shifted	1	9999	0 to 4	Set the number of times to shift the cumulative power monitor digit. Clamps the monitor value at maximum.	0	0	0
091	times		9999	9999	No shift Clears the monitor value when it exceeds the maximum value.		0	
892	Load factor	0.1%	100%	30 to 150%	Set the load factor for commercial power supply operation. This value is used to calculate the power consumption estimated value during commercial power supply operation.	0	0	0
893	Energy saving monitor reference (motor capacity)	0.01/ 0.1kW *1	Inverter rated capacity *2	0.1 to 55/ 0 to 3600kW *1	Set the motor capacity (pump capacity). Set when calculating power saving rate, average power saving rate, commercial power supply operation power.	0	0	0
	Control selection			0	Discharge damper control (fan)			
894	during commercial	1	0	1	Inlet damper control (fan)	0	0	0
094	power-supply		0	2	Valve control (pump)		0	0
	operation			3	Commercial power-supply drive (fixed value)			
895	Power saving rate	1	9999	0	Consider the value during commercial power-supply operation as 100%	0	0	0
035	reference value	· ·	3333	1	Consider the <i>Pr. 893</i> setting as 100%.	0	0	
				9999	No function			
896	Power unit cost	0.01	9999	0 to 500	Set the power unit cost. Displays the power saving rate on the energy saving monitor	0	0	0
				9999	No function			
007	Power saving			0	Average for 30 minutes	_	-	
897	monitor average time	1h	9999	1 to 1000h	Average for the set time	0	0	0
				9999	No function		-	
				0	Cumulative monitor value clear	-		
	Power saving			1	Cumulative monitor value hold	-		
898	cumulative monitor clear	1	9999	10	Cumulative monitor continue (communication data upper limit 9999)	0	×	0
				9999	Cumulative monitor continue (communication data upper limit 65535)			
899	Operation time rate (estimated value)	0.1%	9999	0 to 100%	Use for calculation of annual power saving amount. Set the annual operation ratio (consider 365 days \times 24h as 100%).	0	0	0
				9999	No function			
	rements and setting range hing IPM parameter initializ				apacity. (55K or lower/75K or higher)			_
			-		stment of terminal FM and AM			
	on) (C0(Pr.900), C1	•	•	ai — Auju				
C0 (900)	FM terminal calibration	-	-	_	Calibrate the scale of the meter connected to terminal FM. (Only when <i>Pr: 291</i> = 0, 1)	0	×	0
C1 (901)	AM terminal calibration	-	-	_	Calibrate the scale of the analog meter connected to terminal AM.	0	×	0
C2(902) to C7(905)	Refer to Pr: 125 and I er number in parentheses			·	·	·		<u> </u>

 \mathbb{Z}

Parameter Related parameters	Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear		
-	y and torque setti 17) to C15(Pr.918)		inalog	input — S	Speed limit setting voltage bias and gain		ensorie Vector PM			
C12 (917)	Terminal 1 bias frequency (speed)	0.01Hz	0Hz	0 to 400Hz	Set the frequency on the bias side of terminal 1 input. (valid when $Pr:868 = 5$)	0	×	0		
C13 (917)	Terminal 1 bias (speed)	0.1%	0%	0 to 300%	Set the converted % of the bias side voltage of terminal 1 input. (valid when $Pr.868 = 5$)	0	×	0		
C14 (918)	Terminal 1 gain frequency (speed)	0.01Hz	60Hz *	0 to 400Hz	Set the frequency of terminal 1 input gain (maximum). (valid when $Pr.868 = 5$)	0	×	0		
C15 (918)	Terminal 1 gain (speed)	0.1%	100%	0 to 300%	Set the converted % of the gain side voltage of terminal 1 input. (valid when $Pr.868 = 5$)	0	×	0		
The parameter number in parentheses is the one for use with the parameter unit (FR-PU04/FR-PU07). * Performing IPM parameter initialization changes the settings. (Refer to page 74) Frequency and torque setting by analog input — Torque (magnetic flux) setting voltage (current) bias and gain (C16(Pr.919) to C19(Pr.920), C38(Pr.932) to C41(Pr.933))										
C16 (919)	Terminal 1 bias command (torque/ magnetic flux)	0.1%	0%	0 to 400%	Set the torque/magnetic flux command value on the bias side of terminal 1 input. (valid when $Pr: 868 \neq 0$, 5)	0	×	0		
C17 (919)	Terminal 1 bias (torque/magnetic flux)	0.1%	0%	0 to 300%	Set the converted % of the bias side voltage of terminal 1 input. (valid when $Pr: 868 \neq 0, 5$)	0	×	0		
C18 (920)	Terminal 1 gain command (torque/ magnetic flux)	0.1%	150%	0 to 400%	Set the torque/magnetic flux command value on the gain side of terminal 1 input. (valid when $Pr: 868 \neq 0$, 5)	0	×	0		
C19 (920)	Terminal 1 gain (torque/magnetic flux)	0.1%	100%	0 to 300%	Set the converted % of the gain side voltage of terminal 1 input. (valid when $Pr: 868 \neq 0, 5$)	0	×	0		
C38 (932)	Terminal 4 bias command (torque/ magnetic flux)	0.1%	0%	0 to 400%	Set the torque/magnetic flux command value on the bias side of terminal 4 input. (valid when $Pr: 858 = 1$, 4)	0	×	0		
C39 (932)	Terminal 4 bias (torque/magnetic flux)	0.1%	20%	0 to 300%	Set the converted % of the bias side current (voltage) of terminal 4 input. (valid when <i>Pr</i> : 858 = 1, 4)	0	×	0		
C40 (933)	Terminal 4 gain command (torque/ magnetic flux)	0.1%	150%	0 to 400%	Set the torque/magnetic flux command value on the bias side of terminal 4 input. (valid when $Pr: 858 = 1$, 4)	0	×	0		
C41 (933)	Terminal 4 gain (torque/magnetic flux)	0.1%	100%	0 to 300%	Set the converted % of the gain side current (voltage) of terminal 4 input. (valid when <i>Pr</i> : <i>858</i> = 1, 4)	0	×	0		
					eter unit (FR-PU04/FR-PU07).					
Useful fui	nctions — Parame	eter cop	oy aları	n release	(Pr.989)					
989	Parameter copy alarm release			10, 100	Parameters for alarm release at parameter copy	0	×	0		
 * The initial value differs according to the inverter capacity. (55K or lower/75K or higher) Setting of the parameter unit and operation panel — Buzzer control of the operation panel 										
(Pr.990)										
990	PU buzzer control	1	1	0 1	Without buzzer With buzzer	0	0	0		
		i								

 \mathbb{Z}

Barameted Related parameters	n Name	Incre- ments	Initial Value	Range	Description	Parameter copy	Parameter clear	All parameter clear
	of the parameter un	it and o	operati	on panel	— PU contrast adjustment (Pr.991)			
991	PU contrast adjustment	1	58	0 to 63	Contrast adjustment of the LCD of the parameter unit (FR-PU04/FR-PU07) can be performed. 0 (Light) \rightarrow 63 (Dark)	0	×	0
994, 995	5 Refer to Pr. 286 to Pr.	288.						
PM sens	sorless vector conti	rol — IF	PM par	ameter in	itialization (Pr.998)			
				0	Parameter settings for a general-purpose motor (frequency)			
				3003	Parameter settings for an MM-CF IPM motor (rotations per minute)			
998 ©	IPM parameter initialization	1	0	3103	Parameter settings for an MM-CF IPM motor (frequency)	×	×	×
				8009	Parameter (rotations per minute) settings for an IPM motor other than MM-CF (after tuning)			
				8109	Parameter (frequency) settings for an IPM motor other than MM-CF (after tuning)			
Useful f	unctions — Automa	atic par	ametei	r setting (Pr.999)			
				10	GOT initial setting (PU connector)			
				11	GOT initial setting (RS-485 terminals)			
	Automatic			20	50Hz rated frequency			
999 ©	parameter setting	1	9999	21	60Hz rated frequency	×	×	×
	p			30	Acceleration/deceleration time (0.1s increment)			
				31	Acceleration/deceleration time (0.01s increment)			
				9999	No action			
	ALLC, Er.CL, PCPY, Parameter clear		-	0, 1	py, and automatic parameter setting Setting "1" returns all parameters except calibration p initial values.	arame	ters to	the
ALLC	All parameter clear	1	0	0, 1	Setting "1" returns all parameters to the initial values.			
			-					
Er.CL	Faults history clear	1	0	0, 1	Setting "1" will clear eight past faults.			
				0	Cancel			
PCPY	Parameter copy	1	0	1	Read the source parameters to the operation panel.	41		
	i arameter copy		0	2	Write the parameters copied to the operation panel to inverter.	the de	estinat	on
				3	Verify parameters in the inverter and operation panel.			
IPM	IPM parameter initialization	1	0	0, 3003	When "3003" is set, the parameters required to drive automatically changed as a batch.	an IPN	1 moto	r are
AUTO	Automatic parameter setting	_	_	_	Parameter settings are changed as a batch. Those in communication parameter settings for a GOT connect frequency settings of 50Hz/60Hz, and acceleration/de increment settings.	tion, ra		ne

4 TROUBLESHOOTING

When a fault occurs in the inverter, the inverter trips and the PU display automatically changes to one of the following fault or alarm indications.

If the fault does not correspond to any of the following faults or if you have any other problem, please contact your sales representative.

- When any fault occurs, take the appropriate corrective action, then reset the inverter, and resume operation. Not doing so may lead to the inverter fault and damage.

Inverter fault or alarm indications are roughly categorized as below.

(1) Error message

A message regarding operational fault and setting fault by the operation panel (FR-DU07) and parameter unit (FR-PU04 /FR-PU07) is displayed. The inverter does not trip.

(2) Warning

The inverter does not trip even when a warning is displayed. However, failure to take appropriate measures will lead to a fault.

(3) Alarm

The inverter does not trip. You can also output an alarm signal by making parameter setting.

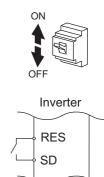
(4) Fault

When a fault occurs, the inverter trips and a fault signal is output.

REMARKS

Past eight faults can be displayed using the setting dial. (Refer to page 167 for the operation.)

4.1 Reset method of protective function


The inverter can be reset by performing any of the following operations. Note that the internal accumulated heat value of the electronic thermal relay function and the number of retries are cleared (erased) by resetting the inverter. Inverter recovers about 1s after the reset is released.

Operation 1: Using the operation panel, press (RESE) to reset the inverter.

(This may only be performed when a fault occurs. (Refer to *page 155* for fault.))

Operation 2:..... Switch power OFF once, then switch it ON again.

Operation 3: Turn ON the reset signal (RES) for more than 0.1s. (If the RES signal is kept ON, "Err." appears (flickers) to indicate that the inverter is in a reset status.)

= CAUTION

• OFF status of the start signal must be confirmed before resetting the inverter fault. Resetting inverter fault with the start signal ON restarts the motor suddenly.

4.2 List of fault or alarm display

	Operation Indicati	Panel on	Name	Refer to
	8	E	Faults history	167
	HOLd	HOLD	Operation panel lock	151
age	LOCJ	LOCD	Password locked	151
Error message	Er / to Er 4	Er1 to 4	Parameter write error	151
En	гЕ to гЕЧ	rE1 to 4	Copy operation error	152
	Enr.	Err.	Error	152
	θL	OL	Stall prevention (overcurrent)	153
	ol	oL	Stall prevention (overvoltage)	153
	rb	RB	Regenerative brake pre- alarm	154
Warning	ſH	TH	Electronic thermal relay function pre-alarm	154
War	PS	PS	PU stop	153
	nr	MT	Maintenance signal output	154
	EP	СР	Parameter copy	154
	SL	SL	Speed limit indication (Output during speed limit)	154
Alarm	۶۵	FN	Fan alarm	155
	E.0C I	E.OC1	Overcurrent trip during acceleration	155
	5 30.3	E.OC2	Overcurrent trip during constant speed	156
	E.OC 3	E.OC3	Overcurrent trip during deceleration or stop	156
	8.0u I	E.OV1	Regenerative overvoltage trip during acceleration	156
	5.002	E.OV2	Regenerative overvoltage trip during constant speed	157
	£.0 J 3	E.OV3	Regenerative overvoltage trip during deceleration or stop	157
t	ЕЛНГ	E.THT	Inverter overload trip (electronic thermal relay function)	157
Fault	6,1 НЛ	E.THM	Motor overload trip (electronic thermal relay function)	158
	6.81 m	E.FIN	Heatsink overheat	158
	EJ PE	E.IPF	Instantaneous power failure	158
	E.UuF	E.UVT	Undervoltage	159
	EJ L F	E.ILF *	Input phase loss	159
	E.OL F	E.OLT	Stall prevention stop	159
	8.S <i>01</i>	E.SOT *	Loss of synchronism detection	160
	E. GF	E.GF	Output side earth (ground) fault overcurrent	160
	E. L.F	E.LF	Output phase loss	160

	Operation Panel						
	Indicati	on	Name	Refer to			
	E.OHF	E.OHT	External thermal relay operation	160			
	5.PF (E.PTC *	PTC thermistor operation	160			
	E.0PF	E.OPT	Option fault	161			
	E.0P.3	E.OP3	Communication option fault	161			
	Е. I to Е. Э	E. 1 to E. 3	Option fault	161			
	E. PE	E.PE	Parameter storage device fault	161			
	E.PUE	E.PUE	PU disconnection	162			
	E.r. 81	E.RET	Retry count excess	162			
	539,3	E.PE2 *	Parameter storage device fault	162			
	E. Sto E. 7 E.CPU	E. 5 to E. 7 E.CPU	CPU fault	162			
	8.278	E.CTE	RS-485 terminal power supply short circuit	162			
t	E.P.2.4	E.P24	24VDC power output short circuit	164			
Fault	0 b 3.3	E.CDO *	Output current detection value exceeded	164			
	EJ 0H	E.IOH *	Inrush current limit circuit fault	164			
	8.58r	E.SER *	Communication fault (inverter)	165			
	E.RT E	E.AIE *	Analog input fault	165			
	<i>E. O</i> S	E.OS	Overspeed occurrence	163			
	6.05J	E.OSD	Speed deviation excess detection	163			
	733.3	E.ECT	Signal loss detection	163			
	E. 08	E.OD	Excessive position fault	164			
	ЕЛЬ I to ЕЛЬП	E.MB1 to E.MB7	Brake sequence fault	163			
	P 3.3	E.EP	Encoder phase fault	164			
	Е. БЕ	E.BE	Brake transistor alarm detection	158			
	E.US6	E.USB *	USB communication fault	165			
	Ε. ΤΤ	E.11	Opposite rotation deceleration fault	165			
	E. 13	E.13	Internal circuit fault	165			

If faults other than the above appear, contact your sales representative.

* If a fault occurs when using the FR-PU04, "Fault 14" is displayed on the FR-PU04.

4.3 Causes and corrective actions

(1) Error message

A message regarding operational troubles is displayed. Output is not shut off.

Operation Panel Indication	HOLD	KOLd		
Name	Operation par	Operation panel lock		
Description	Operation lock mode is set. Operation other than (Refer to page 52.)			
Check point				
Corrective action	Press (MODE) for 2s to release lock.			

Operation Panel Indication	LOCD	6303	
Name	Password locked		
Description	Password function is active. Display and setting of parameter is restricted.		
Check point			
Corrective action	Enter the password in <i>Pr. 297 Password lock/unlock</i> to unlock the password function before operating. (<i>Refer to Chapter 4 of</i> not the Instruction Manual (Applied).)		

Operation Panel Indication	Er1	Er I	
Name	Write disable	error	
Description	 You attempted to make parameter setting when <i>Pr. 77 Parameter write selection</i> has been set to disable parameter write. Frequency jump setting range overlapped. Adjustable 5 points V/F settings overlapped The PU and inverter cannot make normal communication Appears if IPM parameter initialization is attempted in the parameter setting mode while <i>Pr. 72</i> = "25". 		
Check point	 Check the setting of <i>Pr. 77 Parameter write selection (Refer to Chapter 4 of the Instruction Manual (Applied).)</i> Check the settings of <i>Pr. 31 to 36 (frequency jump). (Refer to Chapter 4 of the Instruction Manual (Applied).)</i> Check the settings of <i>Pr. 100 to Pr. 109 (adjustable 5 points V/F). (Refer to Chapter 4 of the Instruction Manual (Applied).)</i> Check the connection of the PU and inverter. Check the <i>Pr. 72 PWM frequency selection</i> setting. A sine wave filter cannot be used under PM sensorless vector control. 		

Operation Panel Indication	Er2	Er 2	
Name		Write error during operation	
Description	When parameter write was performed during operation with a value other than "2" (writing is enabled independently of operating status in any operation mode) is set in <i>Pr.</i> 77 and the STF (STR) is ON.		
Check point • Check the Pr. 77 setting. (Refer to Chapter 4 of not interaction Manual (• Check that the inverter is not operating. • Corrective action • Set "2" in Pr. 77. • After stopping operation, make parameter setting.			

Operation Panel Indication	Er3	Er 3	
Name	Calibration error		
Description	Analog input bias and gain calibration values are too close.		
Check point	Check the settings of C3, C4, C6 and C7 (calibration functions). (<i>Refer to Chapter 4 of</i> the Instruction Manual (Applied).)		

Operation Panel Indication	Er4	Er 4	
Name	Mode design	ation error	
Description	 Appears if a parameter setting is attempted in the External or NET operation mode with <i>Pr</i>: 77 ≠ "2". Appears if a parameter setting is attempted when the command source is not at the operation panel. (FR-DU07). 		
Check point	· Check the	t operation mode is "PU operation mode". Pr. 77 setting. (Refer to Chapter 4 of 📖 the Instruction Manual (Applied).) Pr. 551 setting.	
 After setting the operation mode to the "PU operation mode", make parameter setting. (<i>Re</i> 63.) After setting <i>Pr.</i> 77 = "2", make parameter setting. Set <i>Pr.</i>551 = "2 (initial value)". (<i>Refer to Chapter 4 of</i> 12 the Instruction Manual (Applied).) 		g <i>Pr</i> : 77 = "2", make parameter setting.	

Operation Panel Indication	rE1	r 8 1		
Name	Parameter rea	Parameter read error		
Description	An error occurred in the EEPROM on the operation panel side during parameter copy reading.			
Check point				
Corrective action	 Make parameter copy again. (<i>Refer to page 56.</i>) Check for an operation panel (FR-DU07) failure. Please contact your sales representative. 			

Operation Panel Indication	rE2	r82	
Name	Parameter wr	Parameter write error	
 Pescription You attempted to perform parameter copy write during operation. An error occurred in the EEPROM on the operation panel side during parameter copy writing. 			
Check point	Is the FWD or REV LED of the operation panel (FR-DU07) lit or flickering?		
Corrective action	 After stopping operation, make parameter copy again. (<i>Refer to page 56.</i>) Check for an operation panel (FR-DU07) failure. Please contact your sales representative. 		

Operation Panel Indication	rE3	r 8 3	
Name	Parameter ve	Parameter verification error	
Description	 Data on the operation panel side and inverter side are different. An error occurred in the EEPROM on the operation panel side during parameter verification. 		
Check point	Check for the parameter setting of the source inverter and inverter to be verified.		
Corrective action	 Press SET to continue verification. Make parameter verification again. (<i>Refer to page 57.</i>) Check for an operation panel (FR-DU07) failure. Please contact your sales representative. 		

Operation Panel Indication	rE4	- 64	
Name	Model error		
Description	 A different model was used for parameter write and verification during parameter copy. When parameter copy write is stopped after parameter copy read is stopped 		
Check point • Check that the verified inverter is the same model. • Check that the power is not turned OFF or an operation panel is not disconnected, oparameter copy read. • Use the same model (FR-A700 series) for parameter copy and verification. • Perform parameter copy read again.		the power is not turned OFF or an operation panel is not disconnected, etc. during	

Operation Panel Indication	Err.	Err.
Description	 The RES signal is on The PU and inverter cannot make normal communication (contact fault of the connector) When the voltage drops in the inverter's input side. When the control circuit power (R1/L11, S1/L21) and the main circuit power (R/L1, S/L2, T/L3) are connected to a separate power, it may appear at turning ON of the main circuit. It is not a fault. 	
Corrective action	 Turn OFF the RES signal. Check the connection of the PU and inverter. Check the voltage on the inverter's input side. 	

(2) Warning

When the protective function is activated, the output is not shut off.

Operation Panel Indication	OL		FR-PU04 FR-PU07	OL		
Name	Stall prevention	on (overcurrent)				
	During acceleration	control) of the inverter e operation level, etc.), this current decreases to pr overload current has de increases the frequence	exceeds the stal s function stops event the invert ecreased below y again.	e during Real sensorless vector control or vector I prevention operation level (<i>Pr. 22 Stall prevention</i> the increase in frequency until the overload er from resulting in overcurrent trip. When the stall prevention operation level, this function		
Description	During constant speed operation	control) of the inverter e operation level, etc.), this decreases to prevent th	exceeds the stal s function reduc ne inverter from below stall preve	e during Real sensorless vector control or vector I prevention operation level (<i>Pr. 22 Stall prevention</i> ses frequency until the overload current resulting in overcurrent trip. When the overload ention operation level, this function increases the		
	During deceleration					
Check point	 Check that the <i>Pr. 0 Torque boost</i> setting is not too large. Check that the <i>Pr. 7 Acceleration time</i> and <i>Pr. 8 Deceleration time</i> settings are not too small. Check that the load is not too heavy. Are there any failure in peripheral devices? Check that the <i>Pr. 13 Starting frequency</i> is not too large. Check the motor for use under overload. 					
Corrective action	 Check that <i>Pr. 22 Stall prevention operation level</i> is appropriate. Increase or decrease the <i>Pr. 0 Torque boost</i> value 1% by 1% and check the motor status. (<i>Refer to page 60.</i>) Set a larger value in <i>Pr. 7 Acceleration time</i> and <i>Pr. 8 Deceleration time.</i> (<i>Refer to page 61.</i>) Reduce the load weight. Try Advanced magnetic flux vector control, Real sensorless vector control or vector control. Change the <i>Pr. 14 Load pattern selection</i> setting. Set stall prevention operation current in <i>Pr. 22 Stall prevention operation level</i>. (The initial value is 150%.) The acceleration/deceleration time may change. Increase the stall prevention operation level with <i>Pr. 22 Stall prevention operation level</i>, or disable stall prevention with <i>Pr. 156 Stall prevention operation level</i>. (Use <i>Pr. 156</i> to set either operation continued or not at OL operation.) 					

Operation Panel Indication	oL	οί	FR-PU04 FR-PU07	oL		
Name	Stall prevention	n (overvoltage)				
Description	During deceleration	 If the regenerative energy of the motor becomes excessive and exceeds the regenerative energy consumption capability, this function stops the decrease in frequency to prevent overvoltage trip. As soon as the regenerative energy has decreased, deceleration resumes. If the regenerative energy of the motor becomes excessive when regeneration avoidance function is selected (<i>Pr. 882</i> = 1), this function increases the speed to prevent overvoltage trip. (<i>Refer to Chapter 4 of Pr. the Instruction Manual (Applied).</i>) 				
Check point	 Check for sudden speed reduction. Regeneration avoidance function (<i>Pr. 882 to Pr. 886</i>) is being used? (<i>Refer to Chapter 4 of Leg the Instruction Manual (Applied).</i>) 					
Corrective action	The decelerati	on time may chang	e. Increase the dec	eleration time using Pr. 8 Deceleration time.		

Operation Panel Indication	PS	PS -	FR-PU04 FR-PU07	PS	
Name	PU stop				
Description	Stop with RESET of the PU is set in <i>Pr. 75 Reset selection/disconnected PU detection/PU stop selection.</i> (For <i>Pr. 75, refer to Chapter 4 of End the Instruction Manual (Applied).</i>)				
Check point	Check for a stop made by pressing (STOP) of the operation panel.				
Corrective action	Turn the start	signal OFF and rele	ase with $(PU)_{EXT}$.		

Operation Panel Indication	RB	r b	FR-PU04 FR-PU07	RB	
Name	Regenerative	brake pre-alarm			
Description	Appears if the regenerative brake duty reaches or exceeds 85% of the <i>Pr. 70 Special regenerative brake</i> <i>duty</i> value. For the 11K or higher, when the <i>Pr. 70</i> setting is the initial value (<i>Pr. 70</i> = "0"), this protective function is not available. If the regenerative brake duty reaches 100%, a regenerative overvoltage (E. OV_) occurs. The RBP signal can be simultaneously output with the [RB] display. For the terminal used for the RBP signal output, assign the function by setting "7" (positive logic) or "107" (negative logic) in any of <i>Pr. 190</i> <i>to Pr. 196 (output terminal function selection). (Refer to Chapter 4 of the Instruction Manual (Applied))</i>				
Check point	 Check that the brake resistor duty is not high. Check that the <i>Pr. 30 Regenerative function selection</i> and <i>Pr. 70 Special regenerative brake duty</i> values are correct. 				
Corrective action	 Increase the deceleration time. Check the Pr. 30 Regenerative function selection and Pr. 70 Special regenerative brake duty values. 				

Operation Panel Indication	тн	ſ H	FR-PU04 FR-PU07	тн	
Name	Electronic the	rmal relay function pre	-alarm		
Description	Appears if the cumulative value of the <i>Pr. 9 Electronic thermal O/L relay</i> reaches or exceeds 85% of the preset level. If it reaches 100% of the <i>Pr. 9 Electronic thermal O/L relay</i> setting, a motor overload trip (E. THM) occurs. The THP signal can be simultaneously output with the [TH] display. For the terminal used for the THP signal output, assign the function by setting "8" (positive logic) or "108" (negative logic) in any of <i>Pr. 190</i> to <i>Pr. 196 (output terminal function selection). (Refer to Chapter 4 of</i> the <i>Instruction Manual (Applied))</i>				
Check point	Check for large load or sudden acceleration. Is the <i>Pr. 9 Electronic thermal O/L relay</i> setting is appropriate? (<i>Refer to page 59.</i>)				
Corrective action		load weight or the nur opriate value in Pr: 9 E		times.)/L relay. (Refer to page 59.)	

Operation Panel	мт	nr	FR-PU04			
Indication		111	FR-PU07	MT		
Name	Maintenance	Maintenance signal output				
Description	When the set this warning of	Indicates that the cumulative energization time of the inverter has reached a given time. When the setting of <i>Pr. 504 Maintenance timer alarm output set time</i> is the initial value (<i>Pr. 504</i> = "9999"), this warning does not occur.				
Check point		The <i>Pr. 503 Maintenance timer</i> setting is larger than the <i>Pr. 504 Maintenance timer alarm output set time</i> setting. (<i>Refer to Chapter 4 of</i> the Instruction Manual (Applied).)				
Corrective action	• • •	Setting "0" in <i>Pr. 503 Maintenance timer</i> erases the signal.				

Operation Panel	СР	EP	FR-PU04			
Indication			FR-PU07	СР		
Name	Parameter co	Parameter copy				
Description	Appears when	Appears when parameters are copied between models with capacities of 55K or lower and 75K or higher.				
Check point	Resetting of <i>Pr. 9, Pr. 30, Pr. 51, Pr. 52, Pr. 54, Pr. 56, Pr. 57, Pr. 61, Pr. 70, Pr. 72, Pr. 80, Pr. 82, Pr. 90 to Pr. 94, Pr. 158, Pr. 455, Pr. 458 to Pr. 462, Pr. 557, Pr. 859, Pr. 860 and Pr. 893 is necessary.</i>					
Corrective action	Set the initial	value in Pr. 989 Parameter	r copy alarm relea	ase.		

Operation Panel Indication	SL	51	FR-PU04 FR-PU07	 SL		
Indication			FK-FU0/	3L		
Name	Speed limit in	Speed limit indication (output during speed limit)				
Description	Output if the s	Output if the speed limit level is exceeded during torque control.				
Check point	 Check that the torque command is not larger than required. Check that the speed limit level is not low. 					
Corrective action		 Decrease the torque command. Increase the speed limit level. 				

(3) Alarm

When an alarm occurs, the output is not shut off. You can also output an alarm signal by making parameter setting. (Set "98" in any of Pr. 190 to Pr. 196 (output terminal function selection). (Refer to Chapter 4 of 🚉 the Instruction Manual (Applied).))

Operation Panel Indication	FN	Fn	FR-PU04 FR-PU07	FN		
Name	Fan alarm	Fan alarm				
Description	For the inverter that contains a cooling fan, F_{r} appears on the operation panel when the cooling fan stops due to a fault or different operation from the setting of <i>Pr. 244 Cooling fan operation selection</i> .					
Check point	Check the cooling fan for a fault.					
Corrective action	Check for fan fault. Please contact your sales representative.					

(4) Fault When a fault occurs, the inverter trips and a fault signal is output.

Operation Panel	E.OC1	10.3	1	FR-PU04	OC During Acc		
Indication			1	FR-PU07			
Name		ip during accele					
Description	acceleration,	When the inverter output current reaches or exceeds approximately 220% of the rated current during acceleration, the protective circuit is activated to stop the inverter output. • Check for sudden acceleration.					
Check point	 Check that the downward acceleration time is not long in vertical lift application. Check for output short circuit. Check that the <i>Pr. 3 Base frequency</i> setting is not 60Hz when the rated motor frequency is 50Hz. Check if the stall prevention operation level is set too high. Check if the fast-response current limit operation is disabled. Check that the regeneration is not performed frequently. (Check that the output voltage becomes larger than the V/F reference voltage at regeneration and overcurrent occurs due to the high voltage.) Check that the power supply for RS-485 terminal is not shorted. (under vector control) Check that the encoder wiring and the specifications (encoder power supply, resolution, differential/ complementary) are correct. Check also that the motor wiring (U, V, W) is correct. (under vector control) Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control. Check that the inverter capacity matches with the motor capacity. (PM sensorless vector control) Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control) 						
Corrective action	 (Shorten th When "E.O If "E.OC1" i Check the v Set the Pr. Lower the s Activate the (Applied).) Set base vo End the Instantian the construction of the construction of the set of the construction of the con	C1" is always lift s still lit, contact wiring to make s <i>Base frequency</i> setting of stall pre- e fast-response oltage (rated vol- truction Manual 485 terminal con- rrect wiring and (under vector of motor from swi- ring torque con- erter and motor t command afte	celeration t at startin t your sale sure that of to 50Hz. revention current lin (<i>Applied</i>).) nnection. specifica control) (<i>I</i> itching the trol under capacitie r the mote e/flying st	ng, disconnect thes representativo output short circe (<i>Refer to page 59</i> operation level. mit operation. (<i>I</i>) e motor, etc.) in (under vector of tions for the en <i>Refer to page 28.</i> , e rotation direct Real sensories that match. (For stops. Alterna art function. (<i>Re</i>	cuit does not occur. 9.) Refer to Chapter 4 of 🖭 the Instruction Manual Pr. 19 Base frequency voltage. (Refer to Chapter 4 of control) coder and the motor, and perform the setting		

Operation Panel Indication	E.OC2	5 30.3	FR-PU04 FR-PU07	Stedy Spd OC		
Name	Overcurrent to	rip during constant speed				
Description				approximately 220% of the rated current during vated to stop the inverter output.		
Check point	 Check for sudden load change. Check for output short circuit. Check if the stall prevention operation level is set too high. Check if the fast-response current limit operation is disabled. Check that the power supply for RS-485 terminal is not shorted. (under vector control) Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control. Check that the inverter capacity matches with the motor capacity. (PM sensorless vector control) Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control) 					
Corrective action	 Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control) Keep load stable. Check the wiring to make sure that output short circuit does not occur. Lower the setting of stall prevention operation level. Activate the fast-response current limit operation. (<i>Refer to Chapter 4 of</i> me <i>Instruction Manual (Applied).</i>) Check RS-485 terminal connection. (under vector control) Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) during torque control under Real sensorless vector control. Choose inverter and motor capacities that match. (PM sensorless vector control) Input a start command after the motor stops. Alternatively, set the automatic restart after instantaneous power failure/flying start function. (<i>Refer to Chapter 4 of</i> me <i>Instruction Manual (Applied).</i>) (PM sensorless vector control) 					

Operation Panel Indication	E.OC3	<i>E.OC 3</i>	FR-PU04 FR-PU07	OC During Dec		
Name	Overcurrent tr	ip during deceleration or	r stop			
Description	during decele	When the inverter output current reaches or exceeds approximately 220% of the rated inverter current during deceleration (other than acceleration or constant speed), the protective circuit is activated to stop the inverter output.				
Check point	 Check for sudden speed reduction. Check for output short circuit. Check for too fast operation of the motor's mechanical brake. Check if the stall prevention operation level is set too high. Check if the fast-response current limit operation is disabled. Check that the power supply for RS-485 terminal is not shorted. (under vector control) Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control. Check that the inverter capacity matches with the motor capacity. (PM sensorless vector control) Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control) 					
Corrective action	 Check the viring to make sure that output short circuit does not occur. Check the wiring to make sure that output short circuit does not occur. Check the mechanical brake operation. Lower the setting of stall prevention operation level. Activate the fast-response current limit operation. (<i>Refer to Chapter 4 of</i> not never the Instruction Manual (Applied).) Check RS-485 terminal connection. (under vector control) Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) during torque control under Real sensorless vector control. Choose inverter and motor capacities that match. (PM sensorless vector control) Input a start command after the motor stops. Alternatively, set the automatic restart after instantaneous power failure/flying start function. (<i>Refer to Chapter 4 of</i> not never the <i>Instruction Manual</i> (<i>Applied</i>).) (PM sensorless vector control) 					

Operation Panel Indication	E.OV1	6.0u l	FR-PU04 FR-PU07	OV During Acc		
Name	Regenerative	overvoltage trip during	acceleration			
Description	specified value	If regenerative energy causes the inverter's internal main circuit DC voltage to reach or exceed the specified value, the protective circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system.				
Check point	 Check for too slow acceleration. (e.g. during descending acceleration in vertical lift load) Check that the <i>Pr. 22 Stall prevention operation level</i> is not lower than the no load current. Check if the stall prevention operation is frequently activated in an application with a large load inertia. 					
Corrective action	 Decrease the acceleration operation is nequency activated in an application with a large load metual. Decrease the acceleration time. Use regeneration avoidance function (<i>Pr. 882 to Pr. 886</i>). (<i>Refer to Chapter 4 of</i> the Instruction Manual (Applied).) Set a value larger than the no load current in <i>Pr. 22 Stall prevention operation level</i>. Set <i>Pr.154 Voltage reduction selection during stall prevention operation</i> = "10 or 11". (<i>Refer to Chapter 4 of</i> the Instruction Manual (Applied).) 					

Operation Panel Indication	E.OV2	5.003	FR-PU04 FR-PU07	Stedy Spd OV					
Name	Regenerative	Regenerative overvoltage trip during constant speed							
Description	specified value	If regenerative energy causes the inverter's internal main circuit DC voltage to reach or exceed the specified value, the protective circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system.							
Check point	 Check for sudden load change. Check that the <i>Pr. 22 Stall prevention operation level</i> is not lower than the no load current. Check if the stall prevention operation is frequently activated in an application with a large load inertia. 								
Corrective action	 Check if the stall prevention operation is frequently activated in an application with a large load inertia. Keep load stable. Use regeneration avoidance function (<i>Pr. 882 to Pr. 886</i>). (<i>Refer to Chapter 4 of the Instruction Manual (Applied).</i>) Use the brake unit or power regeneration common converter (FR-CV) as required. Set a value larger than the no load current in <i>Pr. 22 Stall prevention operation level.</i> Set <i>Pr.154 Voltage reduction selection during stall prevention operation =</i> "10 or 11". (<i>Refer to Chapter 4 of the Instruction Manual (Applied).</i>) 								

Operation Panel Indication	E.OV3	E.O u 3	FR-PU04 FR-PU07	OV During Dec				
Name	Regenerative	Regenerative overvoltage trip during deceleration or stop						
Description	specified value	If regenerative energy causes the inverter's internal main circuit DC voltage to reach or exceed the specified value, the protective circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system.						
Check point		 Check for sudden speed reduction. Check if the stall prevention operation is frequently activated in an application with a large load inertia. 						
Corrective action	the load) · Longer the · Use regene <i>Manual (App</i> · Use the bra · Set <i>Pr.154 V</i>	Increase the deceleration time. (Set the deceleration time which matches the moment of inertia of						

Operation Panel Indication	E.THT	E.F.H.F	FR-PU04 FR-PU07	Inv. Ovrload					
Name	Inverter overle	Inverter overload trip (electronic thermal relay function) -							
Description	(220% or less	If a current not less than 150% of the rated output current flows and overcurrent trip does not occur (220% or less), the electronic thermal relay activates to stop the inverter output in order to protect the output transistors. (Overload capacity 150% 60s, inverse-time characteristic)							
Check point	 Check that Check that Check the r Check the r 	 Check that acceleration/deceleration time is not too short. Check that torque boost setting is not too large (small). Check that load pattern selection setting is appropriate for the load pattern of the using machine. Check the motor for use under overload. Check that the encoder wiring and the specifications (encoder power supply, resolution, differential/ complementary) are correct. Check also that the motor wiring (U, V, W) is correct. (under vector approximate) 							
Corrective action	 Adjust the t Set the load Reduce the Find the column 	 Increase acceleration/deceleration time. Adjust the torque boost setting. Set the load pattern selection setting according to the load pattern of the using machine. Reduce the load weight. Find the correct wiring and specifications for the encoder and the motor, and perform the setting accordingly. (under vector control) (<i>Refer to page 28.</i>) 							

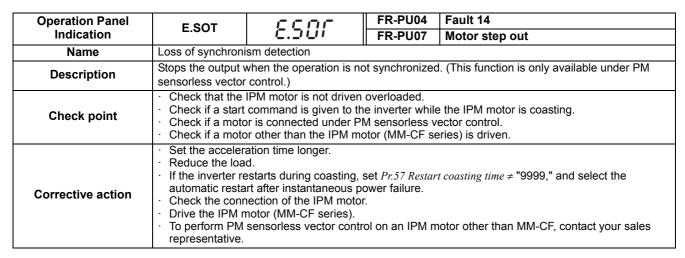
Resetting the inverter initializes the internal heat accumulated value of the electronic thermal relay function.

*

Operation Panel Indication	E.THM	6,F H N	FR-PU04 FR-PU07	Motor Ovrload					
Name	Motor overloa	Motor overload trip (electronic thermal relay function) -							
Description	cooling capab value reaches to stop the inv special motor	The electronic thermal relay function in the inverter detects motor overheat due to overload or reduced cooling capability during low-speed operation and pre-alarm (TH display) is output when the integrated value reaches 85% of the <i>Pr. 9 Electronic thermal O/L relay</i> setting and the protection circuit is activated to stop the inverter output when the integrated value reaches the specified value. When running a special motor such as a multi-pole motor or multiple motors, provide a thermal relay on the inverter output side since such motor(s) cannot be protected by the electronic thermal relay function.							
Check point	Check that the Instruction	 Check the motor for use under overload. Check that the setting of <i>Pr. 71 Applied motor</i> for motor selection is correct. (<i>Refer to Chapter 4 of the Instruction Manual (Applied).</i>) Check that stall prevention operation setting is correct. 							
Corrective action	 Reduce the load weight. For a constant-torque motor, set the constant-torque motor in <i>Pr. 71 Applied motor</i>. Check that stall prevention operation setting is correct. (<i>Refer to Chapter 4 of Prevention Manual (Applied)</i>.) 								

Resetting the inverter initializes the internal heat accumulated value of the electronic thermal relay function.

Operation Panel Indication	E.FIN	6.F1 n	FR-PU04 FR-PU07	H/Sink O/Temp			
Name	Heatsink over	heat	••	•			
Description	If the heatsink overheats, the temperature sensor is actuated to stop the inverter output. The FIN signal can be output when the temperature becomes approximately 85% of the heatsink overheat protection operation temperature. For the terminal used for the FIN signal output, assign the function by setting "26" (positive logic) or "126" (negative logic) in any of <i>Pr. 190 to Pr. 196 (output terminal function selection). (Refer to Chapter 4 of</i> <i>the Instruction Manual (Applied))</i>						
Check point	Check for too high surrounding air temperature. Check for heatsink clogging. Check that the cooling fan is stopped. (Check that <i>E</i> = is displayed on the operation panel.)						
Corrective action	 Set the surr Clean the h 	 Check that the cooling fan is stopped. (Check that <i>F</i>_n is displayed on the operation panel.) Set the surrounding air temperature to within the specifications. Clean the heatsink. Replace the cooling fan. 					


Operation Panel Indication	E.IPF	E! PF	FR-PU04 FR-PU07	Inst. Pwr. Loss		
Name	Instantaneous	s power failure				
Description	If a power failure occurs for longer than 15ms (this also applies to inverter input shut-off), the instantaneous power failure protective function is activated to trip the inverter in order to prevent the control circuit from malfunctioning. If a power failure persists for longer than 100ms, the fault output is not provided, and the inverter restarts if the start signal is ON upon power restoration. (The inverter continues operating if an instantaneous power failure is within 15ms.) In some operating status (load magnitude, acceleration/deceleration time setting, etc.), overcurrent or other protection may be activated upon power restoration. When instantaneous power failure protection is activated, the IPF signal is output. (<i>Refer to Chapter 4 of the Instruction Manual (Applied)</i> .)					
Check point	Find the cause of instantaneous power failure occurrence.					
Corrective action	 Remedy the instantaneous power failure. Prepare a backup power supply for instantaneous power failure. Set the function of automatic restart after instantaneous power failure (<i>Pr. 57</i>). (<i>Refer to Chapter 4 of</i> 1) the Instruction Manual (Applied).) 					

Operation Panel Indication	E.BE	ε.	68	FR-PU04 FR-PU07	Br. Cct. Fault	
Name	Brake transisto	Brake transistor alarm detection				
Description		This function stops the inverter output if an alarm occurs in the brake circuit, e.g. damaged brake transistors. In this case, the inverter must be powered OFF immediately.				
Check point		 Reduce the load inertia. Check that the frequency of using the brake is proper. 				
Corrective action	Replace the ir	Replace the inverter.				

Operation Panel Indication	E.UVT	E.Uul	FR-PU04 FR-PU07	Under Voltage				
Name	Undervoltage	Undervoltage						
Description	If the power supply voltage of the inverter decreases, the control circuit will not perform normal functions. In addition, the motor torque will be insufficient and/or heat generation will increase. To prevent this, if the power supply voltage decreases below about 150VAC (300VAC for the 400V class), this function stops the inverter output. When a jumper is not connected across P/+ and P1, the undervoltage protective function is activated. When undervoltage protection is activated, the IPF signal is output. (<i>Refer to Chapter 4 of the Instruction Manual (Applied)</i>)							
Check point	 Check for start of large-capacity motor. Check that a jumper or DC reactor is connected across terminals P/+ and P1. 							
Corrective action	 Connect a j 	 Check the power supply system equipment such as the power supply. Connect a jumper or DC reactor across terminals P/+ and P1. If the problem still persists after taking the above measure, please contact your sales representative. 						

Operation Panel	E.ILF	<i>ELLE</i>	FR-PU04	Fault 14				
Indication	C.ICF		FR-PU07	Input phase loss				
Name	Input phase lo	Input phase loss						
Description	This fault is output when function valid setting (= 1) is set in <i>Pr.</i> 872 Input phase loss protection selection and one phase of the three phase power input is lost. When the setting of <i>Pr.</i> 872 Input phase loss protection selection is the initial value (<i>Pr.</i> 872 = "0"), this fault does not occur. (<i>Refer to Chapter 4 of</i> the Instruction Manual (Applied).)							
Check point	Check for a break in the cable for the three-phase power supply input.							
Corrective action	 Wire the cables properly. Repair a break portion in the cable. Check the <i>Pr. 872 Input phase loss protection selection</i> setting. 							

Operation Panel Indication	E.OLT	E.01.F	FR-PU04 FR-PU07	Stll Prev STP		
Name	Stall prevention	on stop		·		
Description	If the frequency has fallen to 0.5Hz by stall prevention operation and remains for 3s, a fault (E.OLT) appears and trips the inverter. OL appears while stall prevention is being activated. When speed control is performed by Real sensorless vector control, vector control, or PM sensorless vector control, a fault (E.OLT) is displayed and the inverter output is stopped if frequency drops to the <i>Pr. 865 Low speed detection</i> (initial value is 1.5Hz) setting by torque limit operation and the output torque exceeds <i>Pr. 874 OLT level setting</i> (initial value is 150%) setting and remains for more than 3s.					
Check point	· Check that	 Check the motor for use under overload. (<i>Refer to Chapter 4 of the Instruction Manual (Applied).</i>) Check that the <i>Pr. 865 Low speed detection</i> and <i>Pr. 874 OLT level setting</i> values are correct. (Check the <i>Pr. 22 Stall prevention operation level</i> setting if V/F control is exercised.) 				
Corrective action	 Reduce the load weight. Change the <i>Pr. 22 Stall prevention operation level, Pr. 865 Low speed detection</i> and <i>Pr. 874 OLT level setting</i> values. (Check the <i>Pr. 22 Stall prevention operation level</i> setting if V/F control is exercised.) Check the connection of the IPM motor. (PM sensorless vector control) For a test operation, set the IPM motor test operation. (Refer to <i>Chapter 4 of the Instruction Manual (Applied).</i>) 					

Operation Panel Indication	E.GF	Ε.	5F	FR-PU04 FR-PU07	Ground Fault	
Name	Output side ea	Output side earth (ground) fault overcurrent				
Description	This function stops the inverter output if an earth (ground) fault overcurrent flows due to an earth (ground) fault that occurred on the inverter's output (load) side.					
Check point	Check for an earth (ground) fault in the motor and connection cable.					
Corrective action	Remedy the earth (ground) fault portion.					

Operation Panel Indication	E.LF	Ε.	ιF	FR-PU04 FR-PU07	E.LF	
Name	Output phase	loss				
Description	This function stops the inverter output if one of the three phases (U, V, W) on the inverter's output side (load side) is lost.					
Check point	 Check the wiring (Check that the motor is normal.) Check that the capacity of the motor used is not smaller than that of the inverter. Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control) 					
Corrective action	 Wire the cables properly. Input a start command after the motor stops. Alternatively, set the automatic restart after instantaneous power failure/flying start function. (<i>Refer to Chapter 4 of Plied</i>).) (PM sensorless vector control) 					

Operation Panel Indication	E.OHT	E.0HF	FR-PU04 FR-PU07	OH Fault					
Name	External thern	External thermal relay operation							
Description	If the external thermal relay provided for motor overheat protection, or the internally mounted temperature relay in the motor, etc. switches ON (contacts open), the inverter output is stopped. This function is available when "7" (OH signal) is set in any of <i>Pr. 178 to Pr. 189 (input terminal function selection)</i> . When the initial value (without OH signal assigned) is set, this protective function is not available.								
Check point	 Check for motor overheating. Check that the value of 7 (OH signal) is set correctly in any of <i>Pr. 178 to Pr. 189 (input terminal function selection)</i>. 								
Corrective action		 Reduce the load and operating duty. Even if the relay contacts are reset automatically, the inverter will not restart unless it is reset. 							

Operation Panel	E.PTC	FREE	FR-PU04	Fault 14			
Indication	2.1 10		FR-PU07	PTC activated			
Name	PTC thermistor operation						
Description	Stops the inverter output when the motor overheat status is detected for 10s or more by the external PTC thermistor input connected to the terminal AU. This fault is available when "63" is set in <i>Pr. 184 AU terminal function selection</i> and AU/PTC switch is set in PTC side. When the initial value (<i>Pr. 184</i> = "4") is set, this protective function is not available.						
Check point	 Check the connection between the PTC thermistor switch and thermal protector. Check the motor for operation under overload. Is valid setting (= 63) selected in <i>Pr. 184 AU terminal function selection</i>? (<i>Refer to Chapter 4 of</i> the <i>Instruction Manual (Applied).</i>) 						
Corrective action	Reduce the lo	ad weight.					

Operation Panel Indication	E.OPT	E.0PF	FR-PU04 FR-PU07	Option Fault					
Name	Option fault	Option fault							
Description	 Appears when the AC power supply is connected to the terminal R/L1, S/L2, T/L3 accidentally when a high power factor converter is connected. Appears when the plug-in option is set to be the torque command source by <i>Pr. 804 Torque command source selection</i> setting, but the plug-in option in not connected under torque control. Appears when the switch for the manufacturer setting of the plug-in option is changed. Appears when a communication option is connected while <i>Pr. 296</i> = "0 or 100". 								
Check point	 Check that the AC power supply is not connected to the terminal R/L1, S/L2, T/L3 when a high power factor converter (FR-HC2) or power regeneration common converter (FR-CV) is connected. Check that the plug-in option for torque command setting is connected. Check for the password lock with a setting of <i>Pr</i>: 296 = "0, 100" 								
Corrective action	 Check for the password lock with a setting of <i>Pr. 296</i> = "0, 100" Check the parameter (<i>Pr. 30</i>) setting and wiring. The inverter may be damaged if the AC power supply is connected to the terminal R/L1, S/L2, T/L3 when a high power factor converter is connected. Please contact your sales representative. Check for connection of the plug-in option. Check the <i>Pr. 804 Torque command source selection</i> setting. Return the switch for the manufacturer setting of the plug-in option to the initial status. (<i>Refer to</i> instruction manual of each option) To apply the password lock when installing a communication option, set <i>Pr.296</i> ≠ "0, 100". (<i>Refer to Chapter 4 of</i> in <i>the Instruction Manual (Applied)</i>.) 								

 \mathbb{Z}

Operation Panel Indication	E.OP3	E.OP 3	FR-PU04 FR-PU07	Option3 Fault					
Name	Communicatio	Communication option fault							
Description	Stops the inve	Stops the inverter output when a communication line error occurs in the communication option.							
Check point	 Check for a wrong option function setting and operation. Check that the plug-in option is plugged into the connector securely. Check for a break in the communication cable. Check that the terminating resistor is fitted properly. 								
Corrective action	 Check the option function setting, etc. Connect the plug-in option securely. Check the connection of communication cable. 								

Operation Panel Indication	E. 1 to E. 3	Ε. Ε.	¦ to ∃	FR-PU04 FR-PU07	Fault 1 to Fault 3			
Name	Option fault	Option fault						
Description	Stops the inverter output if a contact fault, etc. of the connector between the inverter and plug-in option occurs or if a communication option is fitted to the connector 1 or 2. Appears when the switch for the manufacturer setting of the plug-in option is changed.							
Check point	 Check that the plug-in option is plugged into the connector securely. (1 to 3 indicate the option connector numbers.) Check for excess electrical noises around the inverter. Check that the communication option is not fitted to the connector 1 or 2. 							
Corrective action	 Connect the plug-in option securely. Connect the plug-in option securely. Take measures against noises if there are devices producing excess electrical noises around the inverter. If the problem still persists after taking the above measure, please contact your sales representative or distributor. Fit the communication option to the connector 3. Return the switch position for the manufacturer setting of the plug-in option to the initial status. (<i>Refer to manual of each option</i>) 							

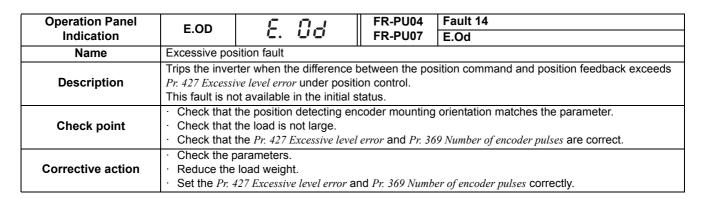
Operation Panel Indication	E.PE	Ε.	PE	FR-PU04 FR-PU07	Corrupt Memry		
Name		Parameter storage device fault (control circuit board)					
Description	Stops the inve	Stops the inverter output if fault occurred in the parameter stored. (EEPROM failure)					
Check point	Check for too	Check for too many number of parameter write times.					
Corrective action	Please contact your sales representative. When performing parameter write frequently for communication purposes, set "1" in <i>Pr. 342</i> to enable RAM write. Note that powering OFF returns the inverter to the status before RAM write.						

Operation Panel	E.PE2	539.3	FR-PU04	Fault 14			
Indication			FR-PU07	PR storage alarm			
Name	Parameter sto	Parameter storage device fault (main circuit board)					
Description	Stops the inve	Stops the inverter output if fault occurred in the parameter stored. (EEPROM failure)					
Check point							
Corrective action	Please contac	Please contact your sales representative.					

Operation Panel Indication	E.PUE	E.PUE	FR-PU04 FR-PU07	PU Leave Out					
Name	PU disconned	PU disconnection							
Description	e.g. the ope Reset selection This function than permiss communication This function 122 PU communication	eration panel and parame on/disconnected PU detect in stops the inverter outp sible number of retries v on retries during the RS- in stops the inverter outp munication check time inte	eter unit is disco ion/PU stop selec- out when commu- when a value oth 485 communica out if communica rrval during the F	unication errors occurred consecutively for more her than "9999" is set in <i>Pr</i> : <i>121 Number of PU</i> tion with the PU connector. ation is broken within the period of time set in <i>Pr</i> : RS-485 communication with the PU connector.					
Check point	 Check that the FR-DU07 or parameter unit (FR-PU04/FR-PU07) is connected properly. Check the <i>Pr</i>: 75 setting. 								
Corrective action	Fit the FR-DU	Fit the FR-DU07 or parameter unit (FR-PU04/FR-PU07) securely.							

Operation Panel Indication	E.RET	E.r. E.f	FR-PU04 FR-PU07	Retry No Over			
Name	Retry count ex	Retry count excess					
Description	This function is	If operation cannot be resumed properly within the number of retries set, this function trips the inverter. This function is available only when <i>Pr. 67 Number of retries at fault occurrence</i> is set. When the initial value (<i>Pr. 67</i> = "0") is set, this fault does not occur.					
Check point	Find the cause of alarm occurrence.						
Corrective action	Eliminate the	Eliminate the cause of the error preceding this error indication.					

	E. 5	Ε.	5		Fault 5			
Operation Panel	E. 6	Ε.	6	FR-PU04	Fault 6			
Indication	E. 7	Ε.	ņ	FR-PU07	Fault 7			
	E.CPU	<i>E.C</i>	PU		CPU Fault			
Name	CPU fault	CPU fault						
Description	Stops the inve	rter output i	f the commu	unication error o	f the built-in CPU occurs.			
Check point	Check for devi	ices produci	ing excess e	electrical noises	around the inverter.			
Corrective action	 Take measures against noises if there are devices producing excess electrical noises around the inverter. Please contact your sales representative. 							


Operation Panel	E.CTE	373.3	FR-PU04					
Indication	LOTE		FR-PU07	E.CTE				
Name	RS-485 termir	RS-485 terminal power supply short circuit						
Description	output. At this time, co To reset, ente	When the internal power supply for RS-485 terminals are shorted, this function shuts off the power output. At this time, communication from the RS-485 terminals cannot be made. To reset, enter the RES signal or switch power OFF, then ON again.						
Check point	Check that the RS-485 terminals are connected correctly.							
Corrective action	Check the cor	Check the connection of the RS-485 terminals						

Operation Panel	E.MB1 to 7	E.11 b i to	FR-PU04			
Indication	Ē.06	<u>Ē</u> ,167	FR-PU07	E.MB1 Fault to E.MB7 Fault		
Name	Brake sequen	ce fault				
Description	function (Pr. 22	78 to Pr. 285). This fault is	s not available i	occurs during use of the brake sequence n the initial status (brake sequence function is		
	invalid). (Refer	invalid). (Refer to Chapter 4 of 🛄 the Instruction Manual (Applied))				
Check point	Find the cause of alarm occurrence.					
Corrective action	Check the set parameters and perform wiring properly.					

Operation Panel Indication	E.OS	<i>E. O</i> S		FR-PU04 FR-PU07	E.OS		
Name	Overspeed or	currence					
Description	Trips the inverter when the motor speed exceeds the <i>Pr. 374 Overspeed detection level</i> during encoder feedback control, Real sensorless vector control, vector control, and PM sensorless vector control. This fault is not available in the initial status.						
Check point	Check that	 Check that the <i>Pr. 374 Overspeed detection level</i> value is correct. Check that the number of encoder pulses does not differ from the actual number of encoder pulses. (Encoder feedback control, vector control) 					
Corrective action	 Set the <i>Pr. 374 Overspeed detection level</i> value correctly. Set the correct number of encoder pulses in <i>Pr. 369 Number of encoder pulses</i>. (Encoder feedback control, vector control) 						

Operation Panel Indication	E.OSD	E.05d	FR-PU04 FR-PU07	E.OSd						
Name	Speed deviati	on excess detection								
Description	Trips the inverter if the motor speed is increased or decreased under the influence of the load etc. during vector control with <i>Pr. 285 Overspeed detection frequency</i> set and cannot be controlled in accordance with the speed command value. While deceleration stop is attempted when the motor is accelerated against the stop command, if the actual motor speed does not decrease for one second, this function stops the inverter output.									
Check point	 Check that the values of <i>Pr. 285 Overspeed detection frequency</i> and <i>Pr. 853 Speed deviation time</i> are correct. Check for sudden load change. Check that the <i>Pr. 369 Number of encoder pulses</i> does not differ from the actual number of encoder pulses. 									
Corrective action	 Keep load s 	 Set Pr. 285 Overspeed detection frequency and Pr. 853 Speed deviation time correctly. Keep load stable. Set the correct number of encoder pulses in Pr. 369 Number of encoder pulses. 								

Operation Panel Indication	E.ECT	733.3	FR-PU04 FR-PU07	E.ECT				
Name	Signal loss de	tection						
Description	control or vec	Trips the inverter when the encoder signal is shut off under orientation control, encoder feedback control or vector control. This fault is not available in the initial status.						
Check point	 Check for the encoder signal loss. Check that the encoder specifications are correct. Check for a loose connector. Check that the switch setting of FR-A7AP/FR-A7AL (option) is correct. Check that the power is supplied to the encoder. Or, check that the power is not supplied to the encoder later than the inverter. Check that the voltage of the power supplied to the encoder is same as the encoder output voltage. 							
Corrective action	 Remedy the signal loss. Use an encoder that meets the specifications. Make connection securely. Make a switch setting of FR-A7AP/FR-A7AL (option) correctly. (<i>Refer to page 29</i>) Supply the power to the encoder. Or supply the power to the encoder at the same time when the power is supplied to the inverter. If the power is supplied to the encoder after the inverter, check that the encoder signal is securely sent and set "0" in <i>Pr. 376.</i> Make the voltage of the power supplied to the encoder the same as the encoder output voltage. 							

Operation Panel Indication	E.EP	P 3.3	FR-PU04 FR-PU07	Fault 14 E.EP				
Name	Encoder phas	Encoder phase fault						
Description	direction dete	Trips the inverter when the rotation command of the inverter differs from the actual motor rotation direction detected from the encoder. This fault is not available in the initial status.						
Check point		 Check for mis-wiring of the encoder cable. Check for wrong setting of <i>Pr. 359 Encoder rotation direction</i>. 						
Corrective action	 Perform connection and wiring securely. Change the <i>Pr. 359 Encoder rotation direction</i> value. 							

Operation Panel Indication	E.P24	E.P24	FR-PU04 FR-PU07	E.P24			
Name	24VDC power	24VDC power output short circuit					
Description	At this time, al	When the 24VDC power output from the PC terminal is shorted, this function shuts off the power output. At this time, all external contact inputs switch OFF. The inverter cannot be reset by entering the RES signal. To reset it, use the operation panel or switch power OFF, then ON again.					
Check point	Check for a short circuit in the PC terminal output.						
Corrective action	Remedy the	· Remedy the earth (ground) fault portion.					

Operation Panel Indication	E.CDO	8633	FR-PU04 FR-PU07	Fault 14 OC detect level			
Name	Output curren	Dutput current detection value exceeded					
Description	This function i	Trips the inverter when the output current exceeds the setting of $Pr. 150$ Output current detection level. This function is available when $Pr. 167$ Output current detection operation selection is set to "1". When the initial value ($Pr. 167 = "0"$) is set, this protective function is not available.					
Check point	Pr. 166 Output	Check the settings of <i>Pr. 150 Output current detection level</i> , <i>Pr. 151 Output current detection signal delay time</i> , <i>Pr. 166 Output current detection signal retention time</i> , <i>Pr. 167 Output current detection operation selection</i> . (<i>Refer to Chapter 4 of</i> 12) the Instruction Manual (Applied).)					

Operation Panel	E.IOH	EL OH	FR-PU04	Fault 14			
Indication	E.IOH		FR-PU07	Inrush overheat			
Name	Inrush current	limit circuit fault					
Description		Stops the inverter output when the resistor of inrush current limit circuit overheated. The inrush current limit circuit failure					
Check point	 Check that the contactor (F Check that the contactor (F 	 Check that frequent power ON/OFF is not repeated. Check that the primary side fuse (5A) in the power supply circuit of the inrush current limit circuit contactor (FR-A740-110K or higher) is not fused. Check that the power supply circuit of inrush current limit circuit contactor is not damaged. 					
Corrective action		Configure a circuit where frequent power ON/OFF is not repeated. If the problem still persists after taking the above measure, please contact your sales representative.					

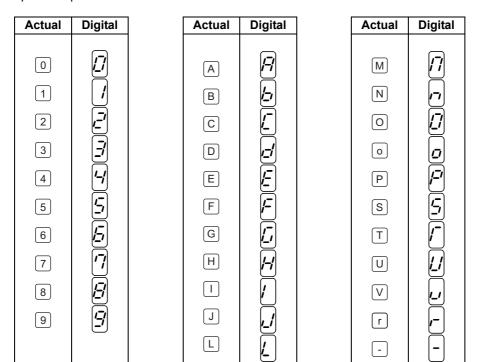
Operation Panel	E.SER	8.58 r	FR-PU04	Fault 14			
Indication	E.SER	C.JC (FR-PU07	VFD Comm error			
Name	Communicatio	Communication fault (inverter)					
Description	permissible re during RS-48	This function stops the inverter output when communication error occurs consecutively for more than permissible retry count when a value other than "9999" is set in <i>Pr. 335 RS-485 communication retry count</i> during RS-485 communication from the RS-485 terminals. This function also stops the inverter output if communication is broken for the period of time set in <i>Pr. 336 RS-485 communication check time interval.</i>					
Check point	Check the RS-485 terminal wiring.						
Corrective action	Perform wiring	g of the RS-485 terminal	s properly.				

Operation Panel	E.AIE	E.81 E	FR-PU04	Fault 14		
Indication	LIAIL		FR-PU07	Analog in error		
Name	Analog input f	ault				
Description	Stops the inverter output when a 30mA or higher current or a 7.5V or higher voltage is input to terminal 2 while the current input is selected by <i>Pr. 73 Analog input selection</i> , or to terminal 4 while the current input is selected by <i>Pr. 267 Terminal 4 input selection</i> .					
Check point	Check the setting of <i>Pr. 73 Analog input selection</i> , <i>Pr. 267 Terminal 4 input selection</i> and voltage/current input switch. (<i>Refer to Chapter 4 of</i> 🖳 the Instruction Manual (Applied).)					
Corrective action		requency command by o and voltage/current inp		set Pr. 73 Analog input selection, Pr. 267 Terminal 4 age input.		

Operation Panel	E.USB	E.USb	FR-PU04	Fault 14				
Indication	E.03B	O	FR-PU07	USB comm error				
Name	USB commun	USB communication fault						
Description	When the time set in <i>Pr. 548 USB communication check time interval</i> has broken, this function stops the inverter output.							
Check point	Check the US	Check the USB communication cable.						
Corrective action	 Check the <i>Pr. 548 USB communication check time interval</i> setting. Check the USB communication cable. Increase the <i>Pr. 548 USB communication check time interval</i> setting. Or, change the setting to 9999. (<i>Refer to Chapter 4 of</i> method) <i>the Instruction Manual (Applied)</i>) 							

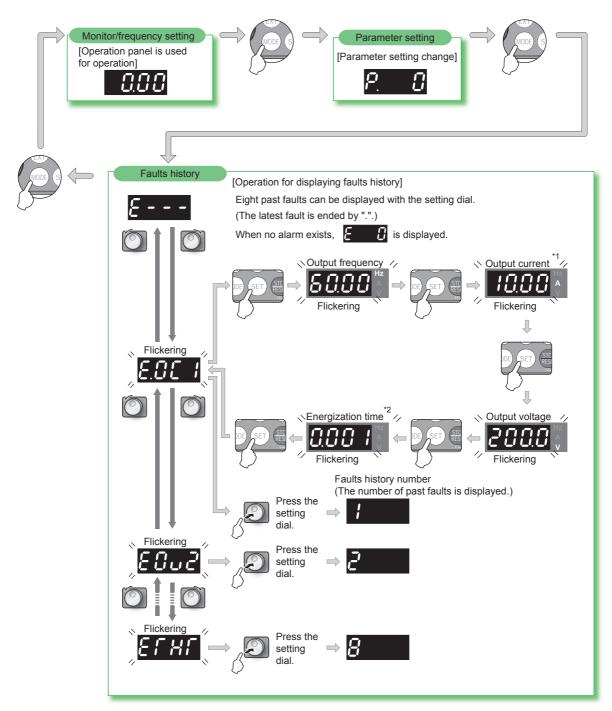
Operation Panel Indication	E.11	Ε.	1	1		FR-PU04 FR-PU07	Fault 11
Name	Opposite rotat	ion decele	ratior	n fault			
Description	The speed may not decelerate during low speed operation if the rotation direction of the speed command and the estimated speed differ when the rotation is changing from forward to reverse or from reverse to forward during torque control under Real sensorless vector control. At this time, the inverter output is stopped if the rotation direction will not change, causing overload. This fault is not available in the initial status (V/F control). (It is available only during Real sensorless vector control.)						
Check point	Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control.						
Corrective action	forward) du	 Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) during torque control under Real sensorless vector control. Please contact your sales representative. 					

E.13	ε.	13	FR-PU04 FR-PU07	Fault 13
Internal circuit	Internal circuit fault			
Stop the inver	Stop the inverter output when an internal circuit fault occurred.			
Please contac	Please contact your sales representative.			
	Internal circuit Stop the inver	Internal circuit fault Stop the inverter output v	Internal circuit fault Stop the inverter output when an inter	E.13 E. i J FR-PU07


= CAUTION =

=

If protective functions of E.ILF, E.SOT, E.PTC, E.PE2, E.EP, E.OD, E.CDO, E.IOH, E.SER, E.AIE, E.USB are activated when using the FR-PU04, "Fault 14" appears. Also when the faults history is checked on the FR-PU04, the display is "E.14".
If faults other than the above appear, contact your sales representative.


4.4 Correspondences between digital and actual characters

There are the following correspondences between the actual alphanumeric characters and the digital characters displayed on the operation panel.

4.5 Check and clear of the faults history

(1) Check for the faults history

*1 When an overcurrent trip occurs by an instant overcurrent, the monitored current value saved in the faults history may be lower than the actual current that has flowed.

*2 The cumulative energization time and actual operation time are accumulated from 0 to 65535 hours, then cleared, and accumulated again from 0. When the operation panel (FR-DU07) is used, the time is displayed up to 65.53 (65530h) in the indication of 1h = 0.001, and thereafter, it is added up from 0.

POINT

(2) Clearing procedure

Check and clear of the faults history

Operation
Screen at power-ON The monitor display appears.
Parameter setting mode Press (MODE) to choose the parameter setting mode. (The parameter number previously read appears.)
Selecting the parameter number Turn O until "Erft" (faults history clear) appears. Press SET to read the present set value. "[]" (initial value) appears.
Faults history clear Turn O to change it to the set value " / ". Press SET to set. " / " and "Erft" flicker alternately after the faults history is cleared. •By turning O , you can read another parameter. •Press SET to show the setting again. •Press (SET) twice to show the next parameter.

4.6 Check first when you have a trouble

Refer to troubleshooting on page 88 (speed control) in addition to the following check points.

POINT
 If the cause is still unknown after every check, it is recommended to initialize the parameters (initial value) then reset the required parameter values and check again.

· Refer to the Instruction Manual (Applied) for mini "Refer to page" column.

4.6.1 Motor does not start

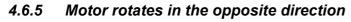
Check points	Possible cause	Countermeasures	Refer to page
Main	Appropriate power supply voltage is not applied.	Power ON a moulded case circuit breaker (MCCB), an earth leakage circuit breaker (ELB), or a magnetic contactor (MC). Check for the decreased input voltage, input phase loss, and wiring.	_
	(Operation panel display is not provided.)	If only the control power is ON when using a separate power source for the control circuit, turn ON the main circuit power.	17
circuit	Motor is not connected properly.	Check the wiring between the inverter and the motor. If the electronic bypass function is active, check the wiring of the magnetic contactor connected between the inverter and the motor.	11
	The jumper across P/+ and P1 is disconnected. (55K or lower)	Securely fit a jumper across P/+ and P1. When using a DC reactor (FR-HEL), remove the jumper across P/+ and P1, and then connect the DC reactor.	11
	Start signal is not input.	Check the start command source, and input a start signal. PU operation mode: (FWD) / (REV) External operation mode : STF/STR signal	2
	Both the forward and reverse rotation start signals (STF, STR) are input simultaneously.	Turn ON only one of the forward and reverse rotation start signals (STF or STR). If STF and STR signals are turned ON simultaneously in the initial setting, a stop command is given.	19
	Frequency command is zero. (FWD or REV LED on the operation panel is flickering.)	Check the frequency command source and enter a frequency command.	2
	AU signal is not ON when terminal 4 is used for frequency setting. (FWD or REV LED on the operation panel is flickering.)	Turn ON the AU signal. Turning ON the AU signal activates terminal 4 input.	19
Input signal	Output stop signal (MRS) or reset signal (RES) is ON. (FWD or REV LED on the operation panel is flickering.)	Turn MRS or RES signal OFF. Inverter starts the operation with a given start command and a frequency command after turning OFF MRS or RES signal. Before turning OFF, ensure the safety.	19
	CS signal is OFF when automatic restart after instantaneous power failure function is selected (<i>Pr: 57</i> ≠ "9999"). (FWD or REV LED on the operation panel is flickering.)	Turn ON the CS signal. Restart operation is enabled when restart after instantaneous power signal (CS) is ON.	
	Jumper connector of sink - source is wrongly selected. (FWD or REV LED on the operation panel is flickering.)	Check that the control logic switchover jumper connector is correctly installed. If it is not installed correctly, input signal is not recognized.	22
	Wiring of encoder is incorrect. (Under encoder feedback control or vector control)	Check the wiring of encoder.	31
	Voltage/current input switch is not correctly set for analog input signal (0 to 5V/0 to 10V, 4 to 20mA). (FWD or REV LED on the operation panel is flickering.)	Set <i>Pr. 73, Pr. 267</i> , and a voltage/current input switch correctly, then input an analog signal in accordance with the setting.	19

Check first when you have a trouble

Check points	Possible cause	Countermeasures	Refer to page
1	STOP RESET was pressed.	During the External operation mode, check the method of	153
Input signal	(Operation panel indication is P5 (PS).)	restarting from a RESET input stop from PU.	
	Two-wire or three-wire type connection is wrong.	Check the connection. Connect STOP signal when three-wire type is used.	127
	<i>Pr. 0 Torque boost</i> setting is improper when V/F control is used.	Increase <i>Pr: 0</i> setting by 0.5% increments while observing the rotation of a motor. If that makes no difference, decrease the setting.	60
	<i>Pr. 78 Reverse rotation prevention selection</i> is set.	Check the <i>Pr</i> : 78 setting. Set <i>Pr</i> : 78 when you want to limit the motor rotation to only one direction.	115
	Pr. 79 Operation mode selection setting is wrong.	Select the operation mode which corresponds with input methods of start command and frequency command.	2
	Bias and gain <i>(calibration parameter C2 to C7)</i> settings are improper.	Check the bias and gain <i>(calibration parameter C2 to C7)</i> settings.	121
	<i>Pr. 13 Starting frequency</i> setting is greater than the running frequency.	Set running frequency higher than <i>Pr. 13</i> . The inverter does not start if the frequency setting signal is less than the value set in <i>Pr. 13</i> .	101
	Frequency settings of various running frequency (such as multi-speed operation) are zero. Especially, <i>Pr. 1 Maximum frequency</i> is zero.	Set the frequency command according to the application. Set <i>Pr</i> : <i>I</i> higher than the actual frequency used.	60
	<i>Pr. 15 Jog frequency</i> setting is lower than <i>Pr. 13 Starting frequency</i> .	Set Pr. 15 Jog frequency higher than Pr. 13 Starting frequency.	104
	The <i>Pr.359 Encoder rotation direction</i> setting is incorrect under encoder feedback control or under vector control.	If the "REV" on the operation panel is lit even though the forward-rotation command is given, set <i>Pr</i> : <i>359</i> ="1."	33
	Operation mode and a writing device do not match.	Check <i>Pr. 79, Pr. 338, Pr. 339, Pr. 550, Pr. 551,</i> and select an operation mode suitable for the purpose.	63, 132
Parameter setting	Start signal operation selection is set by the <i>Pr. 250 Stop</i> selection	Check <i>Pr. 250</i> setting and connection of STF and STR signals.	127
Ū	The motor is decelerated to a stop when power failure deceleration stop function is selected.	When power is restored, ensure the safety, and turn OFF the start signal once, then turn ON again to restart. The motor restarts when $Pr. 261=$ "2, 12".	128
	Auto tuning is being performed.	In the PU operation, press (FESF) on the operation panel after the offline auto tuning completes. In the External operation, turn OFF the start signal (STF, STR). By this operation, offline auto tuning is cancelled, and the monitor display on the PU goes back to normal. (If this operation is not performed, you cannot proceed to the next operation.)	80
	Automatic restart after instantaneous power failure function or power failure stop function is activated. (Performing overload operation during input phase loss may cause voltage insufficiency, and that may result in detection of power failure.)	 Set Pr. 872 Input phase loss protection selection = "1" (input phase failure protection active). Disable the automatic restart after instantaneous power failure function and power failure stop function. Reduce the load. Increase the acceleration time if the automatic restart after instantaneous power failure stop function or power failure stop function occurred during acceleration. 	110, 128
	The test operation is selected under vector control and PM sensorless vector control.	Check the <i>Pr. 800 Control method selection</i> setting.	64
Load	Load is too heavy. Shaft is locked.	Reduce the load. Inspect the machine (motor).	<u> </u>

4.6.2 Motor or machine is making abnormal acoustic noise

Even if the carrier frequency (*Pr.* 72) is set to a value higher than 3kHz for a 55K or lower capacity inverter, the carrier frequency is automatically lowered to as low as 2kHz in an overloaded operation at a low speed (output frequency lower than 3Hz). The lower limit is 6kHz when using an MM-CF IPM motor with the low-speed high-torque characteristic (*Pr.* 788="9999 (initial value)"). Acoustic noise from the motor increases, but it is not a fault. (*Refer to page 114* for *Pr.* 72)


Check points	Possible cause	Countermeasures	Refer to page
Input signal	Disturbance due to EMI when frequency command is	Take countermeasures against EMI.	
Parameter setting	given from analog input (terminal 1, 2, 4).	Increase the <i>Pr. 74 Input filter time constant</i> if steady operation cannot be performed due to EMI.	115
	No carrier frequency noises (metallic noises) are generated.	In the initial setting, <i>Pr. 240 Soft-PWM operation selection</i> is enabled to change motor noise to an unoffending complex tone. Therefore, no carrier frequency noises (metallic noises) are generated. Set <i>Pr. 240</i> = "0" to disable this function.	114
	Resonance occurs. (output frequency)	Set <i>Pr. 31 to Pr. 36 (Frequency jump).</i> When it is desired to avoid resonance attributable to the natural frequency of a mechanical system, these parameters allow resonant frequencies to be jumped.	107
Parameter	Resonance occurs. (carrier frequency)	Change <i>Pr. 72 PWM frequency selection</i> setting. Changing the PWM carrier frequency produces an effect on avoiding the resonance frequency of a mechanical system or a motor.	114
setting		Set a notch filter.	
Ŭ	Auto tuning is not performed under Advanced magnetic flux vector control, Real sensorless vector control, or vector control.	Perform offline auto tuning.	80
	Gain adjustment during PID control is insufficient.	To stabilize the measured value, change the proportional band ($Pr. 129$) to a larger value, the integral time ($Pr. 130$) to a slightly longer time, and the differential time ($Pr. 134$) to a slightly shorter time. Check the calibration of set point and measured value.	121
	The gain is too high under Real sensorless vector	During speed control, check the setting of <i>Pr. 820 (Pr. 830) speed control P gain</i> .	142
	control, vector control or PM sensorless vector control.	During torque control, check the setting of <i>Pr. 824 (Pr. 834) torque control P gain.</i>	142
Others	Mechanical looseness	Adjust machine/equipment so that there is no mechanical looseness.	_
	Contact the motor manufacturer.		
Motor	Operating with output phase loss	Check the motor wiring.	_

4.6.3 Inverter generates abnormal noise

Check points	Possible cause	Countermeasures	Refer to page
Fan	Fan cover was not correctly installed when a cooling fan was replaced.	Install the fan cover correctly.	181

4.6.4 Motor generates heat abnormally

Check points	Possible cause	Countermeasures	Refer to page
	Motor fan is not working	Clean the motor fan.	
Motor	(Dust is accumulated.)	Improve the environment.	_
	Phase to phase insulation of the motor is insufficient.	Check the insulation of the motor.	—
Main	The inverter output veltage (11.)(M) are unhalanced	Check the output voltage of the inverter.	178
circuit	The inverter output voltage (U, V, W) are unbalanced.	Check the insulation of the motor.	
Parameter	The Dr. 71 Applied motor potting is wrong	Check the Dr. 71 Applied motor potting	113
setting	The <i>Pr. 71 Applied motor</i> setting is wrong.	Check the Pr: 71 Applied motor setting.	113
—	Motor current is large.	Refer to "4.6.11 Motor current is too large"	174

Check points	Possible cause	Countermeasures	Refer to page
Main	Phase sequence of output terminals U, V and W is	Connect phase sequence of the output cables (terminal	11
circuit	incorrect.	U, V, W) to the motor correctly.	11
Input	The start signals (forward rotation, reverse rotation) are connected improperly.	Check the wiring. (STF: forward rotation , STR: reverse rotation)	19
signal	The polarity of the frequency command is negative during the polarity reversible operation set by <i>Pr: 73 Analog input selection.</i>	Check the polarity of the frequency command.	
Input signal Parameter setting	Torque command is negative during torque control under vector control.	Check the torque command value.	

4.6.6 Speed greatly differs from the setting

Check points	Possible cause	Countermeasures	Refer to page
Input	Frequency setting signal is incorrectly input.	Measure the input signal level.	—
signal	The input signal lines are affected by external EMI.	Take countermeasures against EMI such as using shielded wires for input signal lines.	
Parameter	<i>Pr. 1, Pr. 2, Pr. 18, calibration parameter C2 to C7</i> settings are improper.	Check the settings of Pr. 1 Maximum frequency, Pr. 2 Minimum frequency, Pr. 18 High speed maximum frequency.	101
setting		Check the <i>calibration parameter</i> C2 to C7 settings.	121
	Pr. 31 to Pr. 36 (frequency jump) settings are improper.	Narrow down the range of frequency jump.	107
Load		Reduce the load weight.	—
Parameter setting	Stall prevention (torque limit) function is activated due to a heavy load.	Set <i>Pr. 22 Stall prevention operation level (Torque limit level)</i> higher according to the load. (Setting <i>Pr. 22</i> too large may result in frequent overcurrent trip $(E.OC\Box)$.)	104 (105)
Motor		Check the capacities of the inverter and the motor.	—

4.6.7 Acceleration/deceleration is not smooth

Check points	Possible cause	Countermeasures	Refer to page
	Acceleration/deceleration time is too short.	Increase acceleration/deceleration time.	61
	Torque boost (Pr. 0, Pr. 46, Pr. 112) setting is improper	Increase/decrease Pr. 0 Torque boost setting value by	
	under V/F control, so the stall prevention function is	0.5% increments to the setting. Deactivate stall	60
	activated.	prevention.	
Parameter	The base frequency setting and the motor characteristic	For V/F control, set Pr. 3 Base frequency, Pr. 47 Second V/F	101
setting	The base frequency setting and the motor characteristic does not match.	(base frequency), and Pr.113 Third V/F (base frequency).	101
		For vector control, set Pr.84 Rated motor frequency.	80
	Regeneration avoidance operation is performed	If the frequency becomes unstable during regeneration	
		avoidance operation, decrease the setting of Pr: 886	145
		Regeneration avoidance voltage gain.	
Load		Reduce the load weight.	—
Parameter	Stall prevention (torque limit) function is activated due to a heavy load.	Set Pr. 22 Stall prevention operation level (Torque limit level)	104
		higher according to the load. (Setting Pr: 22 too large	
setting		may result in frequent overcurrent trip (E.OC□).)	(105)
Motor		Check the capacities of the inverter and the motor.	—

4.6.8 Speed varies during operation

When Advanced magnetic flux vector control, Real sensorless vector control, vector control or encoder feedback control is exercised, the output frequency varies with load fluctuation between 0 and 2Hz. This is a normal operation and is not a fault.

Check points	Possible cause	Countermeasures	Refer to page
Load	Load varies during an operation.	Select Advanced magnetic flux vector control, Real sensorless vector control, vector control, or encoder feedback control.	64, 66,
	Frequency setting signal is varying.	Check the frequency setting signal.	_
	The frequency setting signal is affected by EMI.	Set filter to the analog input terminal using <i>Pr. 74 Input</i> filter time constant, <i>Pr. 822 Speed setting filter 1.</i>	115
		Take countermeasures against EMI, such as using shielded wires for input signal lines.	
Input signal	Malfunction is occurring due to the undesirable current generated when the transistor output unit is connected.	Use terminal PC (terminal SD when source logic) as a common terminal to prevent a malfunction caused by undesirable current.	23
	Multi-speed command signal is chattering.	Take countermeasures to suppress chattering.	
	Feedback signal from the encoder is affected by EMI.	Place the encoder cable far from the EMI source such as main circuit and power supply voltage. Earth (ground) the shield of the encoder cable to the enclosure using a metal P-clip or U-clip.	31
	Fluctuation of power supply voltage is too large.	Change the <i>Pr. 19 Base frequency voltage</i> setting (about 3%) under V/F control.	101
	<i>Pr.80 Motor capacity</i> and <i>Pr.81 Number of motor poles</i> are not appropriate for the motor capacity under Advanced magnetic flux vector control, Real sensorless vector control, vector control, or PM sensorless vector control.	Check the settings of <i>Pr.80 Motor capacity</i> and <i>Pr.81 Number of motor poles</i> .	64, 66
	Wiring length exceeds 30m when Advanced magnetic flux vector control, Real sensorless vector control, vector control, or PM sensorless vector control is selected.	Perform offline auto tuning.	80
	Wiring length is too long for V/F control, and the a	Adjust the <i>Pr. 0 Torque boost</i> setting by increasing with 0.5% increments for the low-speed operation.	60
Parameter setting	voltage drop occurs.	Change the control method to Advanced magnetic flux vector control or Real sensorless vector control.	64
	Hunting occurs by the generated vibration, for example, when structural rigidity at load side is insufficient.	Disable automatic control functions, such as the energy saving operation, the fast-response current limit function, the torque limit, the regeneration avoidance function, Advanced magnetic flux vector control, Real sensorless vector control, vector control, encoder feedback control, droop control, the stall prevention, online auto tuning, the notch filter, and orientation control. During the PID control, set smaller values to <i>Pr</i> : <i>129 PID proportional band</i> and <i>Pr</i> : <i>130 PID integral time</i> . Lower the control gain, and adjust to increase the stability.	_
		Change Pr: 72 PWM frequency selection setting.	114

4.6.9 Operation mode is not changed properly

Check points	Possible cause	Countermeasures	
Input signal	Start signal (STF or STR) is ON.	Check that the STF and STR signals are OFF. When either is ON, the operation mode cannot be changed.	63
Parameter setting	<i>Pr. 79</i> setting is improper.	When <i>Pr. 79 Operation mode selection</i> setting is "0" (initial value), the inverter is placed in the External operation mode at input power ON. To switch to the PU operation mode, press $\begin{pmatrix} PU \\ EXT \end{pmatrix}$ on the operation panel (press PU when the parameter unit (FR-PU04/FR-PU07) is used). At other settings (1 to 4, 6, 7), the operation mode is limited accordingly.	63
	Operation mode and a writing device do not correspond.	Check <i>Pr. 79, Pr. 338, Pr. 339, Pr. 550, Pr. 551,</i> and select an operation mode suitable for the purpose.	63, 132

4.6.10 Operation panel (FR-DU07) display is not operating

Check points	Possible cause	Countermeasures	Refer to page
Main circuit, Control circuit	Power is not input.	Input the power.	9
Front cover	Operation panel is not properly connected to the inverter.	Check if the inverter front cover is installed securely. The inverter cover may not fit properly when using wires whose size are 1.25mm ² or larger, or when using many wires, and this could cause a contact fault of the operation panel.	6

4.6.11 Motor current is too large

Check points	Possible cause	Countermeasures		
	Torque boost (<i>Pr. 0, Pr. 46, Pr. 112</i>) setting is improper under V/F control, so the stall prevention function is activated.	Increase/decrease <i>Pr. 0 Torque boost</i> setting value by 0.5% increments to the setting.	60	
	V/F pattern is improper when V/F control is performed. (<i>Pr. 3, Pr. 14, Pr. 19</i>)	Set rated frequency of the motor to <i>Pr. 3 Base frequency</i> . Use <i>Pr. 19 Base frequency voltage</i> to set the base voltage (e.g. rated motor voltage).	101	
		Change <i>Pr. 14 Load pattern selection</i> according to the load characteristic.		103
Parameter setting	Stall prevention (torque limit) function is activated due to a heavy load.	Reduce the load weight. Set $Pr. 22$ Stall prevention operation level (Torque limit level) higher according to the load. (Setting $Pr. 22$ too large may result in frequent overcurrent trip (E.OC \Box).)		
	Auto tuning is not performed under Advanced magnetic flux vector control, Real sensorless vector control, or vector control.	Check the capacities of the inverter and the motor. Perform offline auto tuning.	80	
	Offline auto tuning is not performed for the PM sensorless vector control with an IPM motor other than MM-CF.	Perform offline auto tuning for the IPM motor.	77	

Refer Check Possible cause Countermeasures to points page Check if the start command and the frequency Start command and frequency command are chattering. ____ command are correct. Input The wiring length used for analog frequency command Perform analog input bias/gain calibration. is too long, and it is causing a voltage (current) drop. signal Take countermeasures against EMI, such as using Input signal lines are affected by external EMI. shielded wires for input signal lines. Check the settings of Pr. 1 Maximum frequency and Pr. 2 Pr. 1, Pr. 2, Pr. 18, calibration parameter C2 to C7 settings 101 Minimum frequency. If you want to run the motor at 120Hz or higher, set Pr. 18 High speed maximum frequency. are improper. Check the calibration parameter C2 to C7 settings. 121 During PM sensorless vector control (MM-CF), the A frequency higher than the maximum IPM motor speed maximum frequency is limited to the maximum speed 187 (frequency) is set. (frequency) of the IPM motor. Check the Pr.125 Terminal 2 frequency setting gain The maximum voltage (current) input value is not set frequency and Pr.126 Terminal 4 frequency setting gain 98 frequency settings. To operate at 120Hz or higher, set during the External operation. (Pr.125, Pr.126, Pr.18) Pr.18 High speed maximum frequency. Torque boost (Pr. 0, Pr. 46, Pr. 112) setting is improper under Increase/decrease Pr. 0 Torque boost setting value by 60 0.5% increments so that stall prevention does not occur. V/F control, so the stall prevention function is activated. Set rated frequency of the motor to Pr. 3 Base frequency. Use Pr. 19 Base frequency voltage to set the base 101 Parameter V/F pattern is improper when V/F control is performed. voltage (e.g. rated motor voltage). setting (Pr. 3, Pr. 14, Pr. 19) Change Pr. 14 Load pattern selection according to the load 103 characteristic. Reduce the load weight. Set Pr. 22 Stall prevention operation level (Torque limit level) Stall prevention (torque limit) function is activated due to 104 higher according to the load. (Setting Pr. 22 too large a heavy load. (105) may result in frequent overcurrent trip (E.OC□).) Check the capacities of the inverter and the motor. Auto tuning is not performed under Advanced magnetic Perform offline auto tuning. 80 flux vector control, Real sensorless vector control, or vector control. Check the specification of the pulse generator (open collector output or complementary output) and check the The setting of pulse train input is improper. adjustment of the pulse train and frequency (Pr. 385 and Pr. 386). During PID control, output frequency is automatically controlled to make measured value = set point. Remove the jumper across terminals PR and PX (7.5K Main Brake resistor is connected across terminals P/+ and or lower) and connect an option brake resistor (FR-ABR) 9 P1 or across P1 and PR by mistake. (22K or lower) circuit across terminals P/+ and PR.

4.6.12 Speed does not accelerate

4.6.13 Unable to write parameter setting

Check points	Possible cause	Countermeasures	
Input signal	Operation is being performed (signal STF or STR is ON).	formed (signal STF or STR is Stop the operation. When <i>Pr.</i> 77 = "0" (initial value), write is enabled only during a stop.	
	You are attempting to set the parameter in the External operation mode.	Choose the PU operation mode. Or, set $Pr.$ 77 = "2" to enable parameter write regardless of the operation mode.	
	Parameter is disabled by the <i>Pr. 77 Parameter write selection</i> setting.	Check Pr. 77 Parameter write selection setting.	
Parameter setting	Key lock is activated by the <i>Pr. 161 Frequency setting/key lock operation selection</i> setting.	Check Pr. 161 Frequency setting/key lock operation selection setting.	124
setting	Operation mode and a writing device do not correspond.	Check <i>Pr. 79, Pr. 338, Pr. 339, Pr. 550, Pr. 551,</i> and select an operation mode suitable for the purpose.	63, 132
	The user has attempted to set "25" in <i>Pr.</i> 72 <i>PWM</i> frequency selection during PM sensorless vector control. The user has attempted to select the PM sensorless vector control while <i>Pr.</i> 72 = "25".	The PM sensorless vector control cannot be selected while $Pr. 72 = "25"$. (A sine wave filter (MT-BSL/BSC) cannot be used under PM sensorless vector control.)	114

4.6.14 Power lamp is not lit

Check points	Possible cause	Countermeasures	Refer to page
Main circuit, Control circuit	Wiring or installation is improper.	Check for the wiring and the installation. Power lamp is lit when power is input to the control circuit (R1/L11, S1/L21).	11

5 PRECAUTIONS FOR MAINTENANCE AND INSPECTION

The inverter is a static unit mainly consisting of semiconductor devices. Daily inspection must be performed to prevent any fault from occurring due to the adverse effects of the operating environment, such as temperature, humidity, dust, dirt and vibration, changes in the parts with time, service life, and other factors.

• Precautions for maintenance and inspection

For some short time after the power is switched OFF, a high voltage remains in the smoothing capacitor. When accessing the inverter for inspection, wait for at least 10 minutes after the power supply has been switched OFF, and then make sure that the voltage across the main circuit terminals P/+ and N/- of the inverter is not more than 30VDC using a tester, etc.

5.1 Inspection item

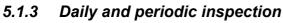
5.1.1 Daily inspection

Basically, check for the following faults during operation.

- (1) Motor operation fault
- (2) Improper installation environment
- (3) Cooling system fault
- (4) Unusual vibration and noise
- (5) Unusual overheat and discoloration

5.1.2 Periodic inspection

Check the areas inaccessible during operation and requiring periodic inspection.


Consult us for periodic inspection.

1) Check for cooling system fault.....Clean the air filter, etc.

- 2) Tightening check and retightening The screws and bolts may become loose due to vibration, temperature changes, etc.
 - Tighten them according to the specified tightening torque. (*Refer to page 14*)
- 3) Check the conductors and insulating materials for corrosion and damage.

4) Measure insulation resistance.

5) Check and change the cooling fan and relay.

Area of Inspection Item				erval		ຸ້
				Periodic	Corrective Action at Alarm Occurrence	Customer's Check
		Check the surrounding air temperature, humidity, dirt, corrosive gas, oil mist , etc.	0		Improve environment	
Ove	erall unit	Check for unusual vibration and noise.	0		Check alarm location and retighten	
		Check for dirt, oil, and other foreign material.*1	0		Clean	
Power supply voltage		Check that the main circuit voltages and control voltages are normal.*2	0		Inspect the power supply	
		(1)Check with megger (across main circuit terminals and earth (ground) terminal).		0	Contact the manufacturer	
Gen	neral	(2) Check for loose screws and bolts.		0	Retighten	
		(3)Check for overheat traces on parts.		0	Contact the manufacturer	
				0	Clean	
Con	ductors cables			0	Contact the manufacturer	
COI				0	Contact the manufacturer	
Trar	nsformer/reactor	Check for unusual odors and abnormal increase in whining sound.	0		Stop the device and contact the manufacturer.	
Main circuit Terminal block		Check for damage.		0	Stop the device and contact the manufacturer.	
Smo	oothing	(1)Check for liquid leakage.		0	Contact the manufacturer	
aluminum electrolytic capacitor Relay/contactor Resistor				0	Contact the manufacturer	
		main circuit capacitor. (Refer to page 179)		0		
		is heard.		0	Contact the manufacturer	
		(1) Check for crack in resistor insulation.		0	Contact the manufacturer	
				0	Contact the manufacturer	
Operation check		with the inverter operated alone is balanced.		0	Contact the manufacturer	
		(2) Check that no fault is found in protective and display circuits in a sequence protective operation test.		0	Contact the manufacturer	
ĸ	Overall	(1) Check for unusual odors and discoloration.		0	Stop the device and contact the manufacturer.	
		(2) Check for serious rust development.		0	Contact the manufacturer	
arts c	Aluminum electrolytic	deformation trace.		0	Contact the manufacturer	
ш	capacitor	control circuit capacitor. (Refer to page 179.)		0		
		(1)Check for unusual vibration and noise.	0			
Cooling fan		(2) Check for loose screws and bolts.		0	screws.	
Heatsink						
			0			
Indi	cation	(2)Check for stains.		0	Clean	
Met	er	Check that reading is normal.	0		the manufacturer.	
Operation check		Check for vibration and abnormal increase in operation noise.	0		Stop the device and contact the manufacturer.	
	Surriver Sur	Surrounding environment Overall unit Power supply voltage General Conductors, cables Transformer/reactor Terminal block Smoothing aluminum electrolytic capacitor Relay/contactor Resistor Resistor Qoeration check Metertolytic capacitor	Surrounding environment Check the surrounding air temperature, humidity, dirt, corrosive gas, oil mist , etc. Overall unit Check for unusual vibration and noise. Power supply voltage Check for dirt, oil, and other foreign material1 Power supply voltage Check that the main circuit voltages and control voltages are normal2 Image: Check that the main circuit terminals and earth (ground) terminal). Check tor loose screws and bolts. (3) Check for overheat traces on parts. (4) Check for stains. Conductors, cables (1) Check conductors for distortion. (2) Check for unusual odors and abnormal increase in whining sound. Terminal block Check for amage. Smoothing aluminum (2) Check for safety valve projection and bulge. (2) Check for safety valve projection and bulge. electrolytic capacitor (3) Visual check and judge by the life check of the main circuit capacitor. (Refer to page 179) Relay/contactor Check that the operation is normal and no chatter is heard. (2) Check for a break in the cable. (1) Check that the output voltages across phases with the inverter operated alone is balanced. Operation check (1) Check for rinusual odors and discoloration. (2) Check for serious rust development. (1) Check for rinusual odors and discoloration. (2) Check for serious rust development.	Inspection Item Description Image: constraint of the sum of the	Surrounding environment Check the surrounding air temperature, humidity, dirt, corrosive gas, oil mist, etc. ○ Overall unit Check for unusual vibration and noise. ○ Power supply voltage Check for unusual vibration and noise. ○ Power supply voltage voltages are normal.2 ○ General (2) Check for loose screws and bolts. (3) Check for overheat traces on parts. (4) Check for outcotors for distortion. (2) Check for loose screws and bolts. (3) Check for distortion. (2) Check for distortion. (2) Check for distortion. (2) Check for distortion, etc.). ○ Transformer/reactor Check for damage. (1) Check for distortion (crack, discoloration, etc.). ○ Terminal block Check for damage. ○ Smoothing aluminum clectrolytic capacitor (1) Check for diguid leakage. (2) Check for safety valve projection and bulge. (3) Visual check and judge by the life check of the main circuit capacitor. (<i>Refer to page</i> 179) ○ Relay/contactor Check that the operation is normal and no chatter is heard. ○ ○ Querall Queral (1) Check for crack in resistor insulation. (2) Check that the output voltages across phases with the inverter operated alone is balanced. (2) Check for satins in sequence protective operation check ○ Querall Querall (1) Check for unusual vibration and noise. (2) Check for stains.	Inspection Item Description Image: Control of the surrounding air temperature, humidity, and the control of the surrounding air temperature, humidity, and the control of the surrounding air temperature, humidity, and the control of temperature, humidity, and the control of temperature, humidity, and the control of temperature, humidity, and the foreign material Control Control Control of the control of temperature, humidity, and temperature, and the manufacturer. Contact the manufacturer Contact the manufacturer General (1)Check for damage. 0 Contact the manufacturer 0 Contact the manufacturer Conductors, cable Check for damage. 0 Contact the manufacturer 0 Contact the manufacturer Transformer/reactor Check for damage. 0 Contact

*1 Oil component of the heat dissipation grease used inside the inverter may leak out. The oil component, however, is not flammable, corrosive, nor conductive and is not harmful to humans. Wipe off such oil component with a cloth, etc.

*2 It is recommended to install a device to monitor voltage for checking the power supply voltage to the inverter.

*3 One to two years of periodic inspection cycle is recommended. However, it differs according to the installation environment. Consult us for periodic inspection.

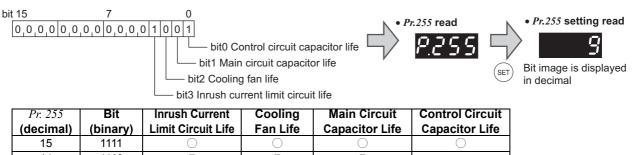
— CAUTION =

Continuous use of a leaked, deformed, or degraded smoothing aluminum electrolytic capacitor (as shown in the table above) may lead to a burst and breakage. Replace such capacitor without delay.

5.1.4 Display of the life of the inverter parts

The self-diagnostic alarm is output when the life span of the control circuit capacitor, cooling fan, each parts of the inrush current limit circuit is near its end. It gives an indication of replacement time .

•	c , c
Parts	Judgement Level
Main circuit capacitor	85% of the initial capacity
Control circuit capacitor	Estimated 10% life remaining
Inrush current limit circuit	Estimated 10% life remaining (Power on: 100,000 times left)
Cooling fan	Less than 50% of the predetermined speed


For the life check of the main circuit capacitor, the alarm signal (Y90) will not be output if a measuring method of (2) is not performed. (*Refer to page 180.*)

REMARKS

• Since repeated inrush currents at power ON will shorten the life of the converter circuit, frequent starts and stops of the magnetic contactor must be avoided.

(1) Display of the life alarm

• *Pr. 255 Life alarm status display* can be used to confirm that the control circuit capacitor, main circuit capacitor, cooling fan, and each parts of the inrush current limit circuit has reached the life alarm output level.

15	1111	0	0	0	0
14	1110	0	0	0	×
13	1101	0	0	×	0
12	1100	0	0	×	×
11	1011	0	×	0	0
10	1010	0	×	0	×
9	1001	0	×	×	0
8	1000	0	\times	×	×
7	0111	×	0	0	0
6	0110	×	0	0	×
5	0101	×	0	×	0
4	0100	×	0	×	×
3	0011	×	×	0	0
2	0010	×	×	0	×
1	0001	×	×	×	0
0	0000	×	×	×	×

 \bigcirc : with alarm, \times : without alarm

POINT	
-------	--

Life check of the main circuit capacitor needs to be done by Pr. 259. (Refer to the following.)

(2) Measuring method of life of the main circuit capacitor

- If the value of capacitor capacity measured before shipment is considered as 100%, *Pr. 255* bit1 is turned on when the measured value falls below 85%.
- Measure the capacitor capacity according to the following procedure and check the deterioration level of the capacitor capacity.
- 1) Check that the motor is connected and at a stop.
- 2) Set "1" (measuring start) in Pr. 259
- 3) Switch power off. The inverter applies DC voltage to the motor to measure the capacitor capacity while the inverter is off.
- 4) After confirming that the LED of the operation panel is off, power on again.
- 5) Check that "3" (measuring completion) is set in Pr. 259, then read Pr. 258 and check the life of the main circuit capacitor.

REMARKS

When the main circuit capacitor life is measured under the following conditions, "forced end" (Pr. 259 = "8") or "measuring error" (Pr. 259 = "9") occurs or it remains in "measuring start" (Pr. 259 = "1").

When measuring, avoid the following conditions to perform. In addition, even when "measurement completion" (*Pr. 259* = "3") is confirmed under the following conditions, normal measurement can not be done.

- (a)FR-HC2, FR-CV, MT-RC or sine wave filter is connected.
- (b) Terminal R1/L11, S1/L21 or DC power supply is connected to the terminals P/+ and N/-.
- (c)Switch power on during measuring.
- (d)The motor is not connected to the inverter.
- (e)The motor is running.(The motor is coasting.)
- (f)The motor capacity is two rank smaller as compared to the inverter capacity.
- (g)The inverter is tripped or a fault occurred while power is off.
- (h)The inverter output is shut off with the MRS signal.
- (i)The start command is given while measuring.
- Operating environment: Surrounding air temperature (annual average 40°C (free from corrosive gas, flammable gas, oil mist, dust and dirt))
 - Output current (80% of the inverter rated current)

POINT

For accurate life measurement of the main circuit capacitor, wait 3 hours or longer after turning OFF. The temperature left in the main circuit capacitor affects measurement.

When measuring the main circuit capacitor capacity (*Pr. 259 Main circuit capacitor life measuring* = "1"), the DC voltage is applied to the motor for 1s at powering off. Never touch the motor terminal, etc. right after powering off to prevent an electric shock.

5.1.5 Cleaning

Always run the inverter in a clean status.

When cleaning the inverter, gently wipe dirty areas with a soft cloth immersed in neutral detergent or ethanol.

CAUTION

Do not use solvent, such as acetone, benzene, toluene and alcohol, as they will cause the inverter surface paint to peel off. The display, etc. of the operation panel (FR-DU07) and parameter unit (FR-PU04/FR-PU07) are vulnerable to detergent and alcohol. Therefore, avoid using them for cleaning.

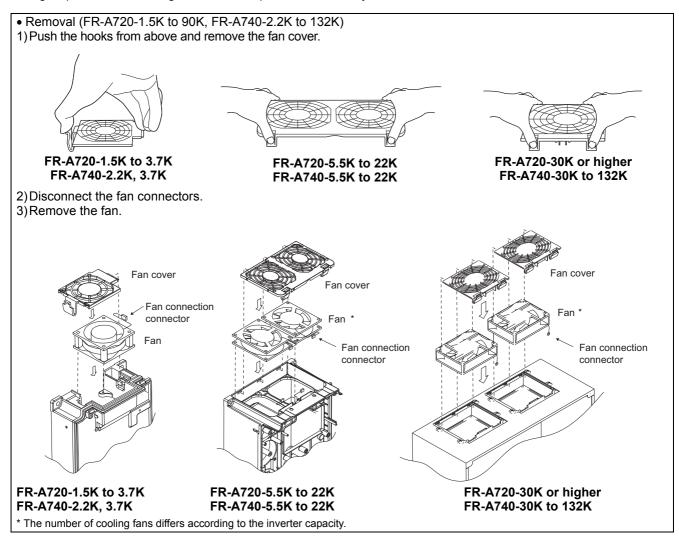
5.1.6 Replacement of parts

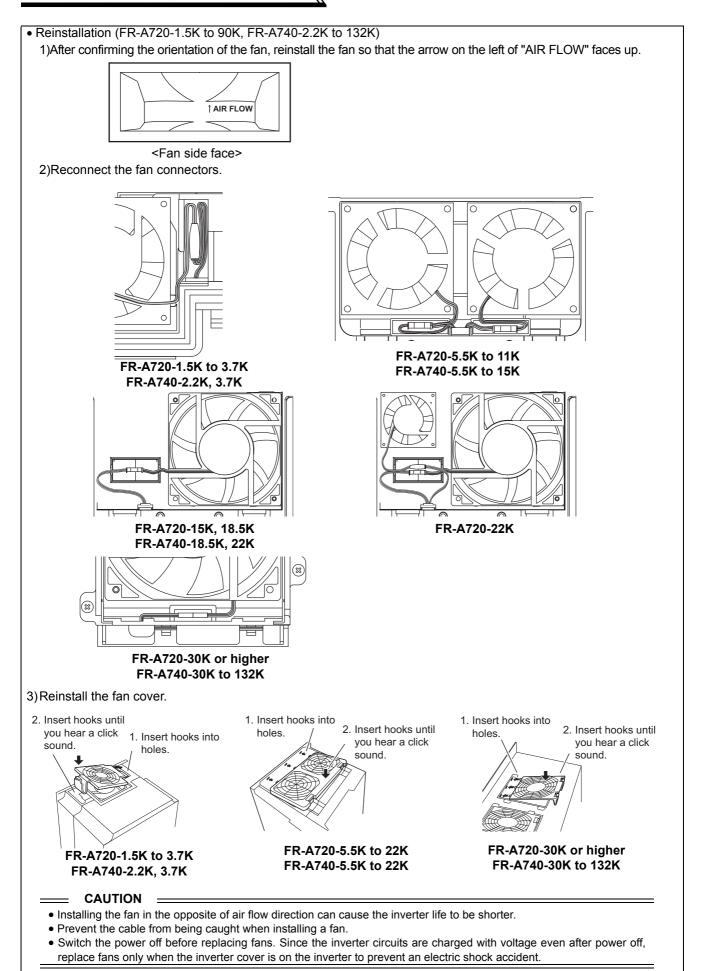
The inverter consists of many electronic parts such as semiconductor devices.

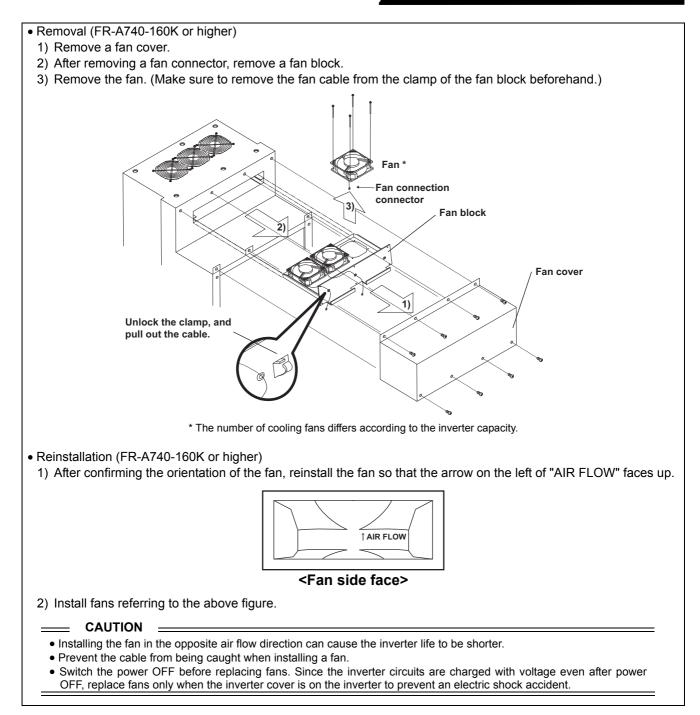
The following parts may deteriorate with age because of their structures or physical characteristics, leading to reduced performance or fault of the inverter. For preventive maintenance, the parts must be replaced periodically. Use the life check function as a guidance of parts replacement.

Part Name	Estimated lifespan *1	Description
Cooling fan	10 years	Replace (as required)
Main circuit smoothing capacitor	10 years *2	Replace (as required)
On-board smoothing capacitor	10 years *2	Replace the board (as required)
Relays	-	as required
Fuse (160K or higher)	10 years	Replace the fuse (as required)

*1 Estimated lifespan for when the yearly average surrounding air temperature is 40°C (without corrosive gas, flammable gas, oil mist, dust and dirt etc)

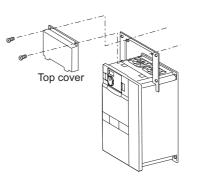

*2 Output current : 80% of the rated inverter current


____ CAUTION _


For parts replacement, consult the nearest Mitsubishi FA Center.	
--	--

(1) Cooling fan

The replacement interval of the cooling fan used for cooling the parts generating heat such as the main circuit semiconductor is greatly affected by the surrounding air temperature. When unusual noise and/or vibration is noticed during inspection, the cooling fan must be replaced immediately.



(2) Replacement procedure of the cooling fan when using a heatsink protrusion attachment (FR-A7CN)

When replacing a cooling fan, remove a top cover of the heatsink protrusion attachment and perform replacement. After replacing the cooling fan, replace the top cover in the original position.

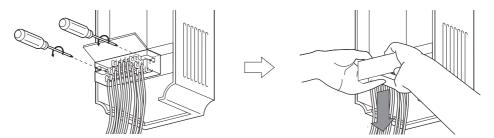
PRECAUTIONS FOR MAINTENANCE AND INSPECTION

A large-capacity aluminum electrolytic capacitor is used for smoothing in the main circuit DC section, and an aluminum electrolytic capacitor is used for stabilizing the control power in the control circuit. Their characteristics are deteriorated by the adverse effects of ripple currents, etc.

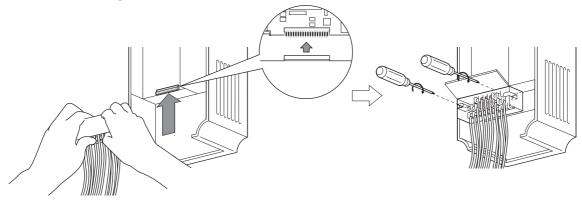
The replacement intervals greatly vary with the surrounding air temperature and operating conditions. When the inverter is operated in air-conditioned, normal environment conditions, replace the capacitors about every 10 years. The appearance criteria for inspection are as follows:

- 1) Case: Check the side and bottom faces for expansion
- 2) Sealing plate: Check for remarkable warp and extreme crack.
- 3) Check for external crack, discoloration, fluid leakage, etc. Judge that the capacitor has reached its life when the measured capacitance of the capacitor reduced below 80% of the rating.

 \mathbb{Z} Refer to page 180 to perform the life check of the main circuit capacitor.


(4) Relays

To prevent a contact fault, etc., relays must be replaced according to the cumulative number of switching times (switching life).


5.1.7 Inverter replacement

The inverter can be replaced with the control circuit wiring kept connected. Before replacement, remove the wiring cover of the inverter.

1) Loosen the two mounting screws in both ends of the control circuit terminal block. (These screws cannot be removed.) Pull down the terminal block from behind the control circuit terminals.

2) Using care not to bend the pins of the inverter's control circuit connector, reinstall the control circuit terminal block and fix it with the mounting screws.

Before starting inverter replacement, switch power OFF, wait for at least 10 minutes, and then check the voltage with a tester and such to ensure safety.

6 SPECIFICATIONS

6.1 Inverter rating

•200V class

-	2000 01033																		
	Model FR-A	4720-□□K	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
A	pplicable motor	capacity (kW) *1	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
	Rated capacity	y (kVA) *2	1.1	1.9	3.1	4.2	6.7	9.2	12.6	17.6	23.3	29	34	44	55	67	82	110	132
nt	Rated current	(A) *3	3	5	8	11	17.5	24	33	46	61	76	90	115	145	175	215	288 (245)	346 (294)
Output	Overload curre	nt rating *4		1	50% 6	0s, 20	0% 3s	(invers	e-time	chara	cteristi	cs) su	rroun	ding ai	ir temp	oeratu	re 50°	С	
Ō	Rated voltage	*5							Three	e-phas	e 200	to 240)V						
	Regenerative braking torque	Maximum value/ permissible duty		% toro 3%ED∗			torque/ ED*6	100% 1 2%E	•			/orque Jous *			20% t contir	orque/ nuous	/		orque/ nuous
upply	Rated input AC voltage/fre	quency					Thre	e-phas	e 200	to 220	V 50⊦	lz, 200) to 24	0V 60)Hz				
S	Permissible AC	voltage fluctuation						170	to 242	V 50H	z,170	to 264	V 60H	Ηz					
ower	Permissible free	quency fluctuation								1	:5%								
Ро	Power supply of	capacity (kVA) *7	1.5	2.5	4.5	5.5	9	12	17	20	28	34	41	52	66	80	100	110	132
P	rotective structu	Ire (JEM 1030) *9				E	nclosed	d type (IP20) [,]	8					Op	ben typ	be (IPC)0)	
С	ooling system		Self-c	cooling						F	orced	air coo	oling						
A	pprox. mass (kg	1)	1.9	2.3	3.8	3.8	3.8	7.1	7.1	7.5	13	13	14	23	35	35	58	70	70
*4	The second second second	motor consoit (india	- 1 - J - 1	11			1 P .			1 NA'I	 1.2 × 1.2 	4 1 .	1 1 1 1 1 d						

*1. The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4-pole standard motor.

*2. The rated output capacity indicated assumes that the output voltage is 220V.

*3. When operating the inverter of 75K or higher with a value larger than 2kHz set in *Pr. 72 PWM frequency selection*, the rated output current is the value in parentheses.

*4. The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load.

*5. The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the pulse voltage value of the inverter output side voltage remains unchanged at about $\sqrt{2}$ that of the power supply.

*6. With the dedicated external brake resistor FR-ABR (option), the 0.4K and 0.75K, 1.5K to 7.5K, 11K to 22K will achieve the performance of 150% torque/ 10%ED, 100% torque/10%ED and 100% torque/6%ED respectively.

*7. The power supply capacity varies with the value of the power supply side inverter impedance (including those of the input reactor and cables).

*8. When the hook of the inverter front cover is cut off for installation of the plug-in option, protective structure of the inverter changes to an open type (IP00).

*9. FR-DU07:IP40 (except for the PU connector)

•400V class

	Model FR-A740-DDK	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
Ар	plicable motor capacity (kW) *1	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
	Rated capacity (kVA) *2	1.1	1.9	3	4.6	6.9	9.1	13	17.5	23.6	29	32.8	43.4	54	65	84
	Rated current (A)	1.5	2.5	4	6	9	12	17	23	31	38	44	57	71	86	110
Dutput	Overload current rating *4		150	% 60s,	200%	3s (inv				,		ing air ⁻	temper	ature 5	0°C	
OU	Rated voltage *5						Th	ree-ph	ase 38	0 to 48	0V					
	RegenerativeMaximum value/braking torquepermissible duty			100% t	orque/2	2%ED∗e	i		20% 1	torque/	continu	OUS *6	20%	torque	/contin	uous
Power supply	Rated input AC voltage/frequency					Т	hree-p	nase 3	80 to 48	30V 50	Hz/60H	lz				
r sı	Permissible AC voltage fluctuation						3	23 to 5	28V 50	Hz/60F	lz					
Me	Permissible frequency fluctuation								±5%							
Рс	Power supply capacity (kVA) *7	1.5	2.5	4.5	5.5	9	12	17	20	28	34	41	52	66	80	100
Pr	otective structure *9				E	Enclose	d type	(IP20) [,]	*8				0	pen typ	be (IP0	0)
Сс	ooling system	Se	elf-cooli	ng					Fo	orced a	ir coolii	ng				
Ap	prox. mass (kg)	3.8	3.8	3.8	3.8	3.8	7.1	7.1	7.5	7.5	13	13	23	35	35	37
	Model FR-A740-□□K	75	90	110	132	160	185	220	250	280	315	355	400	450	500	1
Ар	Model FR-A740-DICK blicable motor capacity (kW) *1	75 75	90 90	110 110	132 132	160	185 185	220 220	250 250	280 280	315 315	355 355	400 400	450 450	500 500	
Ар		-		-	-			-								
	plicable motor capacity (kW) *1	75 110 144 (122)	90 137 180 (153)	110 165 216 (184)	132 198 260 (221)	160 248 325 (276)	185 275 361 (307)	220 329 432 (367)	250 367 481 (409)	280 417 547 (465)	315 465 610 (519)	355 521 683 (581)	400 587 770 (655)	450 660 866 (736)	500 733 962 (818)	
	blicable motor capacity (kW) *1 Rated capacity (kVA) *2	75 110 144 (122)	90 137 180	110 165 216 (184)	132 198 260 (221)	160 248 325 (276)	185 275 361 (307)	220 329 432 (367)	250 367 481 (409)	280 417 547 (465)	315 465 610 (519)	355 521 683 (581)	400 587 770 (655)	450 660 866 (736)	500 733 962 (818)	
Output de	Rated capacity (kW) *1 Rated capacity (kVA) *2 Rated current (A)*3 Overload current rating *4 Rated voltage*5	75 110 144 (122)	90 137 180 (153)	110 165 216 (184)	132 198 260 (221)	160 248 325 (276)	185 275 361 (307) e-time (220 329 432 (367) charact	250 367 481 (409)	280 417 547 (465)) surro	315 465 610 (519)	355 521 683 (581)	400 587 770 (655)	450 660 866 (736)	500 733 962 (818)	
	Rated capacity (kW) *1 Rated capacity (kVA) *2 Rated current (A)*3 Overload current rating *4	75 110 144 (122)	90 137 180 (153)	110 165 216 (184)	132 198 260 (221)	160 248 325 (276)	185 275 361 (307) e-time o Three	220 329 432 (367) charact -phase	250 367 481 (409) eristics	280 417 547 (465)) surro 480V	315 465 610 (519)	355 521 683 (581)	400 587 770 (655)	450 660 866 (736)	500 733 962 (818)	
Output	Dicable motor capacity (kW) *1 Rated capacity (kVA) *2 Rated current (A)*3 Overload current rating *4 Rated voltage*5 Regenerative Maximum value/	75 110 144 (122)	90 137 180 (153)	110 165 216 (184)	132 198 260 (221)	160 248 325 (276) (inverse	185 275 361 (307) e-time o Three 10%	220 329 432 (367) charact -phase torque	250 367 481 (409) eristics 380 to	280 417 547 (465)) surro 480V uous	315 465 610 (519) unding	355 521 683 (581)	400 587 770 (655)	450 660 866 (736)	500 733 962 (818)	
supply Output .	blicable motor capacity (kW) *1 Rated capacity (kVA) *2 Rated current (A)*3 Overload current rating *4 Rated voltage*5 Regenerative braking torque braking torque current sible duty Rated input	75 110 144 (122)	90 137 180 (153)	110 165 216 (184)	132 198 260 (221)	160 248 325 (276) (inverse	185 275 361 (307) e-time o Three 10% e-phas	220 329 432 (367) charact -phase torque e 380 t	250 367 481 (409) eristics 380 to	280 417 547 (465)) surro 480V uous	315 465 610 (519) unding	355 521 683 (581)	400 587 770 (655)	450 660 866 (736)	500 733 962 (818)	
supply Output .	Dicable motor capacity (kW) *1 Rated capacity (kVA) *2 Rated current (A)*3 Overload current rating *4 Rated voltage*5 Regenerative braking torque braking torque currentsible duty Rated input AC voltage/frequency	75 110 144 (122)	90 137 180 (153)	110 165 216 (184)	132 198 260 (221)	160 248 325 (276) (inverse	185 275 361 (307) e-time o Three 10% e-phas	220 329 432 (367) charact -phase torque e 380 t	250 367 481 (409) eristics 380 to /continu	280 417 547 (465)) surro 480V uous	315 465 610 (519) unding	355 521 683 (581)	400 587 770 (655)	450 660 866 (736)	500 733 962 (818)	
upply Output	Dicable motor capacity (kW) *1 Rated capacity (kVA) *2 Rated current (A)*3 Overload current rating *4 Rated voltage*5 Regenerative Maximum value/ permissible duty Rated input AC voltage/frequency Permissible AC voltage fluctuation	75 110 144 (122)	90 137 180 (153)	110 165 216 (184)	132 198 260 (221)	160 248 325 (276) (inverse	185 275 361 (307) e-time o Three 10% e-phas	220 329 432 (367) charact -phase torque e 380 t	250 367 481 (409) eristics 380 to /continu- /continu- 0 480V / 50Hz	280 417 547 (465)) surro 480V uous	315 465 610 (519) unding	355 521 683 (581)	400 587 770 (655)	450 660 866 (736)	500 733 962 (818)	
Power supply Output	Dicable motor capacity (kW) *1 Rated capacity (kVA) *2 Rated current (A)*3 Overload current rating *4 Rated voltage*5 Regenerative braking torque braking torque permissible duty Rated input AC voltage/frequency Permissible AC voltage fluctuation Permissible frequency fluctuation	75 110 144 (122)	90 137 180 (153) 150% 6	110 165 216 (184) 50s, 20	132 198 260 (221) 0% 3s	160 248 325 (276) (inverse	185 275 361 (307) e-time of Three 10% e-phas 323 275	220 329 432 (367) charact -phase torque e 380 t to 528\ ±5 329	250 367 481 (409) eristics 380 to /contin o 480V / 50Hz	280 417 547 (465)) surro 480V uous 50Hz// /60H 417	315 465 610 (519) unding 60Hz	355 521 683 (581) air tem	400 587 770 (655) peratur	450 660 866 (736) e 50°C	500 733 962 (818)	
Dutput Output	Dicable motor capacity (kW) *1 Rated capacity (kVA) *2 Rated current (A)*3 Overload current rating *4 Rated voltage*5 Regenerative braking torque braking torque permissible duty Rated input AC voltage/frequency Permissible AC voltage fluctuation Permissible frequency fluctuation Power supply capacity (kVA) *7	75 110 144 (122)	90 137 180 (153) 150% 6	110 165 216 (184) 50s, 20	132 198 260 (221) 0% 3s	160 248 325 (276) (inverse	185 275 361 (307) e-time of Three 10% e-phas 323 2275	220 329 432 (367) charact -phase torque e 380 t to 528 ±5 329 pen typ	250 367 481 (409) eristics 380 to /continu o 480V / 50Hz 5% 367	280 417 547 (465)) surro 480V uous 50Hz// /60H 417 0)	315 465 610 (519) unding 60Hz	355 521 683 (581) air tem	400 587 770 (655) peratur	450 660 866 (736) e 50°C	500 733 962 (818)	

*1. The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4-pole standard motor.

*2. The rated output capacity indicated assumes that the output voltage is 440V.

*3. When operating the inverter of 75K or higher with a value larger than 2kHz set in Pr. 72 PWM frequency selection, the rated output current is the value in

parentheses. The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for *4. the inverter and motor to return to or below the temperatures under 100% load.

*5. The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the pulse voltage value of the inverter output side voltage remains unchanged at about $\sqrt{2}$ that of the power supply.

*6. With the dedicated external brake resistor FR-ABR-H (option), the 0.4K to 7.5K and 11K to 22K will achieve the performance of 100% torque/10%ED and 100% torque/6%ED respectively.

*7.

The power supply capacity varies with the value of the power supply side inverter impedance (including those of the input reactor and cables). When the hook of the inverter front cover is cut off for installation of the plug-in option, protective structure of the inverter changes to an open type (IP00). *8

*9. FR-DU07:IP40 (except for the PU connector)

6.2 Motor rating

(1) Vector control dedicated motor SF-V5RU (1500r/min series)

•200V class

	400													
Motor type SF-V5RUDDH	K	1	2	3	5	7	11	15	18	22	30	37	45	55
Applicable inv FR-A720-DDF		2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75
Rated output		1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30 *1	37 *1	45 *1	55
Rated torque	(N"m)	9.55	14.1	23.6	35.0	47.7	70.0	95.5	118	140	191	235	286	350
Maximum toro (N [•] m)	que 150% 60s	14.3	21.1	35.4	52.4	71.6	105	143	176	211	287	353	429	525
Rated speed (r/min)		1		1		1	1500	1	1	1	I		
Maximum spe	ed (r/min)		-		-	-		0 *2	-	-	-		-	2400
Frame No.		90L	100L	112M	132S	132M	160M	160L	180M	180M	200L	200L	200L	225S
Inertia momer (×10 ⁻⁴ kg • m ²)	nt J	67.5	105	175	275	400	750	875	1725	1875	3250	3625	3625	6850
Noise *5					7	5dB or les	S				8	0dB or les	S	85dB or less
	Voltage	S		ohase 200 e 200V to	V/50Hz 230V/60H	łz				ree-phase -phase 20				
Cooling fan (with thermal protector) *7 *8	Input *3		36/55W 0.26/0.32A		22/2	28W 0.13A)			71W 0.39A)			100/156W 0.47/0.53A		85/130W (0.46/0.52A)
	Recommended thermal setting		0.36A		0.1	8A		0.5	51A			0.69A		0.68A
Surrounding a humidity	ir temperature,				-10 to	+40°C (no	on-freezinę	g), 90%RH	l or less (I	non-conde	ensing)			
Structure (Protective st	ructure)						ally enclos otor: IP44							
Detector				E	Encoder 20	,	,	· · ·			er supply	*6		
Equipment							Encoder, t		otector, far	า				
Heat resistand Vibration rank								F V10						
Approx. mass		24	33	41	52	62	99	113	138	160	238	255	255	320
●400V cl														
Motor type SF-V5RUH□□	ıĸ	1	2	3	5	7	11	15	18	22	30	37	45	55
Applicable inv FR-A740-DDH		2.2	2.2	3.7	7.5	11	15	18.5	22	30	37	45	55	75
Rated output	(kW)	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30 *1	37 *1	45 *1	55
Rated torque	(N⁼m)	9.55	14.1	23.6	35.0	47.7	70.0	95.5	118	140	191	235	286	350
Maximum tore (N [•] m)	que 150% 60s	14.3	21.1	35.4	52.4	71.6	105	143	176	211	287	353	429	525
Rated speed (1500				•		
Maximum spe	ed (r/min)	0.01	100	44014	4000	40014		0 *2	40014	40014	0001	0001	0001	2400
Frame No. Inertia momer	at I	90L	100L	112M	132S	132M	160M	160L	180M	180M	200L	200L	200L	225S
(×10 ⁻⁴ kg*m ²)		67.5	105	175	275	400	750	875	1725	1875	3250	3625	3625	6850
Noise *5					7	5dB or les	s				8	0dB or les	S	85dB or less
	Voltage	S	Single ingle-phas	ohase 200 e 200V to	0V/50Hz 230V/60H	Ηz				-phase 38 -phase 40				
Cooling fan (with thermal protector) *7 *8	Input *3	((36/55W 0.26/0.32A	N)		28W 0.13A)			71W 0.19A)			100/156W 0.27/0.30A		85/130W (0.23/0.26A)
. ,	Recommended thermal setting		0.36A		0.1	8A		0.2	25A			0.39A		0.34A
Surrounding a humidity	ir temperature,				-10 to	+40°C (no	on-freezing	g), 90%RH	l or less (I	non-conde	ensing)			
Structure (Protective st	ructure)						ally enclos otor: IP44							
Detector	ucture)			F	Encoder 20						er sunnly	*6		
Equipment						,	Encoder, t	, .				-		
Heat resistand	ce class						,.	F	.,					
Vibration rank	ι –							V10						
Approx. mass	; (kg)	24	33	41	52	62	99	113	138	160	238	255	255	320
4 000/ 1	ut in the high-sp		(The aud	بالمحمد أحاجه	برجر والربين اورجر ور		1:- 0400-	·				ا ما الما ما		

80% output in the high-speed range. (The output is reduced when the speed is 2400r/min or more. Contact us separately for details.) A dedicated motor of 3.7kW or less can be run at the maximum speed of 3600 r/min. Consult our sales office when using the motor at the maximum speed. *1

*2 *3 *4 Power (current) at 50Hz/60Hz.

Since a motor with brake has a window for gap check, the protective structure of both the cooling fan section and brake section is IP20. S of IP23S is an additional code indicating the condition that protection from water intrusion is established only when a cooling fan is not operating. The value when high carrier frequency is set (Pr.72 = 6, Pr.240 = 0). *5

The 12V power supply or the control terminal option (FR-A7PS) is required as the power supply for the encoder. The cooling fan is equipped with a thermal protector. The cooling fan stops when the coil temperature exceeds the specified value in order to protect the fan motor. A restrained cooling fan or degraded fan motor insulation could be causes for the rise in coil temperature. The cooling fan re-starts when the coil *6 *7

temperature drops to normal. The voltage and input values are the standard specifications of the cooling fan in free air. When the cooling fan is used with a motor, it requires more energy to perform its work, and thus the above input values become slightly larger. The cooling fan can, however, be used as it is without causing problems. When a thermal relay is to be prepared at the customer's side, use the recommended thermal relay settings. *8

(2) Vector control dedicated motor SF-THY

tor t	type					SF-THY	,				
	ahla	in	FR-A720-DDK			FI	R-A740-□□	IK			
рпса	able	inverter	90	90	110	132	160	185	220	280	
ted o	outp	ut (kW)	75	75	90	110	132	160	200	250	
ted t	torqu	ue (kgf•m)	48.7	48.7	58.4	71.4	85.7	103.9	129.9	162.3	
	-	(N'm)	477	477	572	700	840	1018	1273	1591	
xim	um t	orque(kgf•m)	73.0	73.0	87.6	107.1	128.5	155.8	194.8	243.4	
)%6(0s	(N•m)	715	715	858	1050	1260	1527	1909	2386	
ted s	spee	d (r/min)	1500				1500				
		peed (r/min)	2400	2400			18	00			
			250MD	250MD	250MD	280MD	280MD	280MD	280L	315H	
rtia	mon	nent J (kg·m²)	1.1	1.1	1.7	2.3	2.3	4.0	3.8	5.0	
ise			90dB		90dB			95	dB		
		Voltago		Thre	ee-phase, 20	0V/50Hz, 20	0V/60Hz, 22	0V/60Hz			
oling	g	voltage		(40	00V class co	oling fan is a	vailable upor	n order)			
1				400	400	400	400	400	750	750	
		60Hz	750	750	750	750	750	750	1500	1500	
-			610	610	660	870	890	920	1170	1630	
				-10 to +40	°C (non-free	zina) 90%R	H or less (no	n-condensin	na)		
						0,1			.9/		
			_		,		,				
			En	coder 2048F					upply *1		
					Encode						
Vib											
er											
po						12VDC±10	J%				
anc						90mA					
a be		-			nhaaaa (000	phono ob:#	7 phono: 1 -	ouloo/rov			
ate		<u>· · · · · · · · · · · · · · · · · · · </u>									
dic	Out			•		•			JIIOW)		
Detector Encoder 2048P/R, A phase, B phase, Z phase +12VDC power supply *1 Equipment Encoder, thermal protector*2, fan Insulation Class F Vibration rank V10 Power supply voltage 2048 pulse/rev Power supply voltage 12VDC±10% Current 90mA Output signal form A, B phases (90° phase shift) Z phase: 1 pulse/rev Output circuit Complementary (constant voltage output matched by emitter follow) "H" level: Power supply voltage 3V or less (IoL: 20mA)											
	Dedicated encoder Vit	ied outp ted torqu ximum t 0%60s ied spee ximum s me No. rtia mon ise oling prox. ma Surrout temper Structu Detecto Equipm Insulati Vibratio Equipm Insulati Vibratio Cui out out Out	plicable inverter ted output (kW) ted torque (kgf·m) (N·m) ximum torque(kgf·m) 9%60s (N·m) ted speed (r/min) me No. rtia moment J (kg·m ²) ise Voltage Input (W) 50Hz 60Hz prox. mass (kg) Surrounding air temperature, humidity Structure Detector Equipment Insulation Vibration rank Resolution Power supply voltage Current consumption Output circuit Output voltage	FR-A720-□□K 90 ited output (kW) 75 ited torque (kgf·m) 75 ited torque (kgf·m) 48.7 (N°m) 48.7 kied torque (kgf·m) 48.7 vision (N°m) 73.0 yision (N°m) 715 ted speed (r/min) 2400 ximum speed (r/min) 2400 Input (W) 50Hz Solution Solution Solution Solution Solution Solution Solution <th>plicable inverter plicable inv</th> <th>FR-A720-□□K 90 90 110 ited output (kW) 75 75 90 ited torque (kgf·m) (N·m) 48.7 48.7 58.4 (N·m) 477 477 572 ximum torque(kgf·m) 0%60s 73.0 73.0 87.6 9%60s (N·m) 715 715 858 ited speed (r/min) 2400 2400 2400 ximum speed (r/min) 2400 2400 2400 ites 90dB 90dB 90dB rtia moment J (kg·m²) 1.1 1.1 1.7 ise 90dB 90dB 90dB pool 610 610 660 structure 50Hz 750 750 prox. 50Hz 750 750 750 potector Encoder 2048P/R, A phase Encoder 2048P/R, A phase Encode structure Equipment Encoder 2048P/R, A phase Encode pool Qutput signal form A, B phases (90°</th> <th>FR-A720-□□K FR-A720-□□K 90 90 110 132 12 90 90 110 132 12 10 75 75 90 110 12 10 75 75 90 110 12 10 132 75 90 110 12 132 75 90 110 132 12 130 73.0 73.0 87.6 107.1 10%60s (N'm) 715 715 858 1050 12 11 1.1 1.7 2.3 110 11.1 1.7 2.3 13 11 1.1 1.1 1.7 2.3 11 1.1 1.7 2.3 13 10 11 1.1 1.7 2.3 11 1.1 1.7 2.3 14 10 10 610 610 660 870 10 10 <td< th=""><th>FR-A720-□□K FR-A740-□□ 90 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 48.7 48.7 58.4 71.4 85.7 ied output (rmin) 73.0 73.0 87.6 107.1 128.5 ied opeed (r/min) 2400 2400 160 18 imme No. 250MD 250MD 250MD 280MD 280MD ise 90dB 10 160 660 870 <td< th=""><th>Pilcable inverter FR-A720-□□K FR-A740-□□K 90 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted torque (kgf'm) 48.7 48.7 58.4 71.4 85.7 103.9 tkimum torque(kgf'm) 73.0 73.0 87.6 107.1 128.5 155.8 twise 715 715 858 1050 1260 1527 ted speed (r/min) 1500 280MD 280MD 280MD 280MD 280MD 280MD 280MD 160 160 400 400 400 400 400 160 160 550 750<</th><th>FR-A720-DDK FR-A740-DDK plicable inverter 90 90 110 132 160 185 220 ted output (kW) 75 75 90 110 132 160 200 ted output (kgf:m) 48.7 48.7 58.4 71.4 85.7 103.9 129.9 (N*m) 477 477 572 700 840 1018 1273 ximum torque(kgf:m) 73.0 73.0 87.6 107.1 128.5 155.8 194.8 %60s (N'm) 715 715 858 1050 1527 1909 ted speed (r/min) 1500 1500 1500 1600 1800 280MD 280MD 280MD 280MD 280L 180 38 90dB 90dB 95dB 95dB 95dB 95dB 95dB 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 100 120</th></td<></th></td<></th>	plicable inverter plicable inv	FR-A720-□□K 90 90 110 ited output (kW) 75 75 90 ited torque (kgf·m) (N·m) 48.7 48.7 58.4 (N·m) 477 477 572 ximum torque(kgf·m) 0%60s 73.0 73.0 87.6 9%60s (N·m) 715 715 858 ited speed (r/min) 2400 2400 2400 ximum speed (r/min) 2400 2400 2400 ites 90dB 90dB 90dB rtia moment J (kg·m²) 1.1 1.1 1.7 ise 90dB 90dB 90dB pool 610 610 660 structure 50Hz 750 750 prox. 50Hz 750 750 750 potector Encoder 2048P/R, A phase Encoder 2048P/R, A phase Encode structure Equipment Encoder 2048P/R, A phase Encode pool Qutput signal form A, B phases (90°	FR-A720-□□K FR-A720-□□K 90 90 110 132 12 90 90 110 132 12 10 75 75 90 110 12 10 75 75 90 110 12 10 132 75 90 110 12 132 75 90 110 132 12 130 73.0 73.0 87.6 107.1 10%60s (N'm) 715 715 858 1050 12 11 1.1 1.7 2.3 110 11.1 1.7 2.3 13 11 1.1 1.1 1.7 2.3 11 1.1 1.7 2.3 13 10 11 1.1 1.7 2.3 11 1.1 1.7 2.3 14 10 10 610 610 660 870 10 10 <td< th=""><th>FR-A720-□□K FR-A740-□□ 90 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 48.7 48.7 58.4 71.4 85.7 ied output (rmin) 73.0 73.0 87.6 107.1 128.5 ied opeed (r/min) 2400 2400 160 18 imme No. 250MD 250MD 250MD 280MD 280MD ise 90dB 10 160 660 870 <td< th=""><th>Pilcable inverter FR-A720-□□K FR-A740-□□K 90 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted torque (kgf'm) 48.7 48.7 58.4 71.4 85.7 103.9 tkimum torque(kgf'm) 73.0 73.0 87.6 107.1 128.5 155.8 twise 715 715 858 1050 1260 1527 ted speed (r/min) 1500 280MD 280MD 280MD 280MD 280MD 280MD 280MD 160 160 400 400 400 400 400 160 160 550 750<</th><th>FR-A720-DDK FR-A740-DDK plicable inverter 90 90 110 132 160 185 220 ted output (kW) 75 75 90 110 132 160 200 ted output (kgf:m) 48.7 48.7 58.4 71.4 85.7 103.9 129.9 (N*m) 477 477 572 700 840 1018 1273 ximum torque(kgf:m) 73.0 73.0 87.6 107.1 128.5 155.8 194.8 %60s (N'm) 715 715 858 1050 1527 1909 ted speed (r/min) 1500 1500 1500 1600 1800 280MD 280MD 280MD 280MD 280L 180 38 90dB 90dB 95dB 95dB 95dB 95dB 95dB 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 100 120</th></td<></th></td<>	FR-A720-□□K FR-A740-□□ 90 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 75 75 90 110 132 160 ied output (kW) 48.7 48.7 58.4 71.4 85.7 ied output (rmin) 73.0 73.0 87.6 107.1 128.5 ied opeed (r/min) 2400 2400 160 18 imme No. 250MD 250MD 250MD 280MD 280MD ise 90dB 10 160 660 870 <td< th=""><th>Pilcable inverter FR-A720-□□K FR-A740-□□K 90 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted torque (kgf'm) 48.7 48.7 58.4 71.4 85.7 103.9 tkimum torque(kgf'm) 73.0 73.0 87.6 107.1 128.5 155.8 twise 715 715 858 1050 1260 1527 ted speed (r/min) 1500 280MD 280MD 280MD 280MD 280MD 280MD 280MD 160 160 400 400 400 400 400 160 160 550 750<</th><th>FR-A720-DDK FR-A740-DDK plicable inverter 90 90 110 132 160 185 220 ted output (kW) 75 75 90 110 132 160 200 ted output (kgf:m) 48.7 48.7 58.4 71.4 85.7 103.9 129.9 (N*m) 477 477 572 700 840 1018 1273 ximum torque(kgf:m) 73.0 73.0 87.6 107.1 128.5 155.8 194.8 %60s (N'm) 715 715 858 1050 1527 1909 ted speed (r/min) 1500 1500 1500 1600 1800 280MD 280MD 280MD 280MD 280L 180 38 90dB 90dB 95dB 95dB 95dB 95dB 95dB 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 100 120</th></td<>	Pilcable inverter FR-A720-□□K FR-A740-□□K 90 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted output (kW) 75 75 90 110 132 160 185 ted torque (kgf'm) 48.7 48.7 58.4 71.4 85.7 103.9 tkimum torque(kgf'm) 73.0 73.0 87.6 107.1 128.5 155.8 twise 715 715 858 1050 1260 1527 ted speed (r/min) 1500 280MD 280MD 280MD 280MD 280MD 280MD 280MD 160 160 400 400 400 400 400 160 160 550 750<	FR-A720-DDK FR-A740-DDK plicable inverter 90 90 110 132 160 185 220 ted output (kW) 75 75 90 110 132 160 200 ted output (kgf:m) 48.7 48.7 58.4 71.4 85.7 103.9 129.9 (N*m) 477 477 572 700 840 1018 1273 ximum torque(kgf:m) 73.0 73.0 87.6 107.1 128.5 155.8 194.8 %60s (N'm) 715 715 858 1050 1527 1909 ted speed (r/min) 1500 1500 1500 1600 1800 280MD 280MD 280MD 280MD 280L 180 38 90dB 90dB 95dB 95dB 95dB 95dB 95dB 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 100 120	

*1 The 12V power supply or the control terminal option (FR-A7PS) is required as the power supply for the encoder.

*2 A motor with a thermal protector is also available. Contact your sales representative.

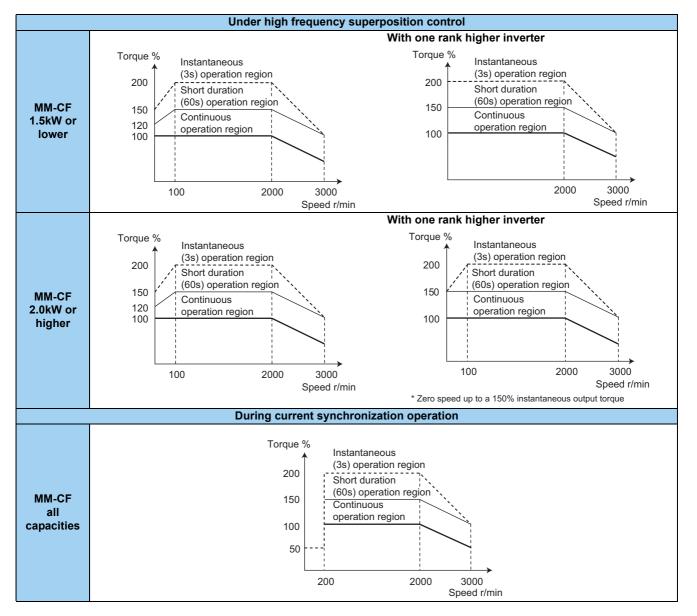
(3) IPM motor MM-CF

	Motor			20	00r/min Serie	s		
Item		MM-CF 52(C)(B)	MM-CF 102(C)(B)	MM-CF 152(C)(B)	MM-CF 202(C)(B)	MM-CF 352(C)(B)	MM-CF 502(C)	MM-CF 702(C)
Compatible	FR-A720-□	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K
inverter		0.75K ∗6	1.5K ∗6	2.2K ∗6	3.7K ∗6	5.5K ∗6	7.5K ∗6	11K *6
Continuous	Rated output [kW]	0.5	1.0	1.5	2.0	3.5	5.0	7.0
characteristics	Rated torque [N•m]	2.39	4.78	7.16	9.55	16.70	23.86	33.41
Rated s	peed *1 [r/min]				2000			
Max. s	peed [r/min]				3000			
	permissible speed r/min]				3450			
	orque [N•m]	4.78	9.56	14.32	19.09	33.41	47.73	66.82
	moment J ∗₅) ⁻⁴ kg•m ²]	6.6 (7.0)	13.7 (14.9)	20.0 (21.2)	45.5 (48.9)	85.6 (89.0)	120.0	160.0
inertia mome	ded ratio of load ent to motor shaft a moment •2		100 times max			50 times	s max.	
Rated	current [A]	1.81	3.70	5.22	7.70	12.5	20.5	27.0
Insul	ation rank				Class F			
St	ructure				enclosed, self- system:IP44 *3,			
	Surrounding air temperature and humidity		-10C° to +4	l0C° (non-freez	zing) • 90%RH	or less (non-co	ondensing)	
Environmental conditions	Storage temperature and humidity		-20C° to +7	′0C° (non-freez	zing) • 90%RH	or less (non-co	ondensing)	
	Ambience	Indoors	(no direct sunli		-	flammable gas	, oil mist, dust	and dirt
	Altitude				000m above se			
	Vibration			X: 9.	8m/s ² , Y: 24.5r	n/s ²		
Ма	ss ∗₅ [kg]	5.1 (7.8)	7.2 (11)	9.3 (13)	13 (20)	19 (28)	27	36

*1 When the power supply voltage drops, we cannot guarantee the above output and rated speed.

*2 When the load torque is 20% of the motor rating. The permissible load inertia moment ratio is smaller when the load torque is larger.

Consult us if the load inertia moment ratio exceeds the above value.


*3 This does not apply to the shaft through portion.

*4 Value for MM-CF□2C.

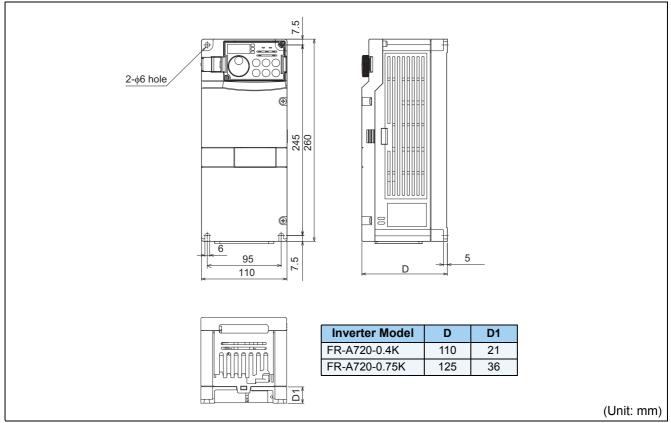
*5 The value for MM-CF \Box 2B is indicated in parentheses.

*6 Applicable one-rank higher inverters for the lifted low-speed range torque operation.

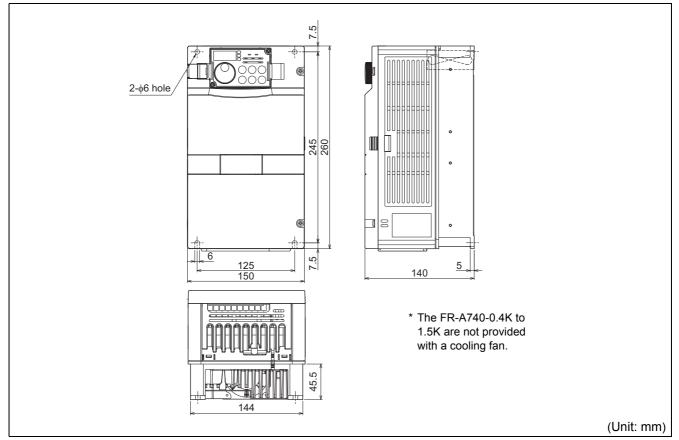
Torque characteristics

6.3 **Common specifications**

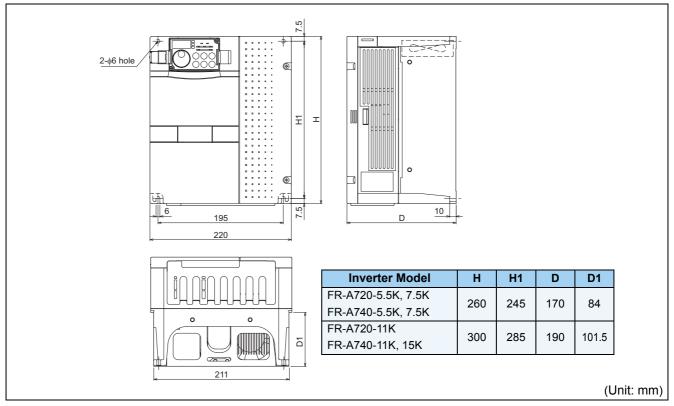
	Control meth	od	Soft-PWM control/high carrier frequency PWM control (V/F control, Advanced magnetic flux vector control and Real sensorless
			vector control are available / vector control *1 / PM sensorless vector control
-	Output freque	ency range	0.2 to 400Hz (The maximum frequency is 120Hz under Real sensorless vector control and vector control.) 0.015Hz/60Hz (terminal 2, 4: 0 to 10V/12bit)
6	Frequency	Analog input	0.03Hz/60Hz (terminal 2, 4: 0 to 5V/12bit) 0.03Hz/60Hz (terminal 2, 4: 0 to 5V/11bit, 0 to 20mA/about 11bit, terminal 1: 0 to ±10V/12bit)
ŝŭo	setting	/ indiog input	0.06Hz/60Hz (terminal 1: 0 to ±5V/11bit)
ati	resolution	Digital input	0.01Hz
Control specifications	Frequency	Analog input	Within ±0.2% of the max. output frequency (25°C±10°C)
bed.	accuracy	Digital input	Within 0.01% of the set output frequency
sl		ency characteristics	Base frequency can be set from 0 to 400Hz Constant torque/variable torque pattern or adjustable 5 points V/F can be selected
jt.	Starting torqu		200% at 0.3Hz (0.4K to 3.7K), 150% at 0.3Hz (5.5K or higher) (under Real sensorless vector control or vector control *1) Manual torgue boost
ō.	Torque boost	deceleration time	10 to 3600s (acceleration and deceleration can be set individually), linear or S-pattern acceleration/deceleration mode, backlash
-	setting		measures acceleration/deceleration mode are available.
		brake (induction motor)	Operation frequency (0 to 120Hz), operation time (0 to 10s), operation voltage (0 to 30%) can be changed
		on operation level	Operation current level can be set (0 to 220% adjustable), whether to use the function or not can be selected
	Torque limit le		Torque limit value can be set (0 to 400% variable)
	Frequency	Analog input	Terminal 2, 4: 0 to 10V, 0 to 5V, 4 to 20mA (0 to 20mA) can be selected. Terminal 1: -10 to +10V, -5 to +5V can be selected
	setting signal	Digital input	Input using the setting dial of the operation panel or parameter unit Four-digit BCD or 16-bit binary (when used with option FR-A7AX)
	Start signal		Forward and reverse rotation or start signal automatic self-holding input (3-wire input) can be selected.
	otart olgital		The following signals can be assigned to Pr. 178 to Pr. 189 (input terminal function selection): multi speed selection, remote setting, stop-
			on-contact, second function selection, third function selection, terminal 4 input selection, JOG operation selection, selection of
			automatic restart after instantaneous power failure, flying start, external thermal relay input, inverter run enable signal (FR-HC2/FR-CV
			connection), FR-HC2 connection (instantaneous power failure detection), PU operation/external inter lock signal, external DC injection
			brake operation start, PID control enable terminal, brake opening completion signal, PU operation/External operation switchover, load pattern selection forward rotation reverse rotation boost, V/F switchover, load torque high-speed frequency, S-pattern acceleration/
	Input signals	(twelve terminals)	partient selection to water location receiver se rotation boost, or switching selection, control mode switching selection control mode switching selection control mode switching selections control mode switchin
			selection, start-time tuning start external input, torque bias selection 1, 2*1, P/PI control switchover, forward rotation command,
			reverse rotation command, inverter reset, PTC thermistor input, PID forward reverse operation switchover, PU-NET operation
			switchover, NET-External operation switchover, command source switchover, simple position pulse train sign, simple position droop
			pulse clear, DC feeding operation permission, DC feeding cancel, magnetic flux decay output shutoff, proximity dog *3, 0V voltage calibration request *5.
	Pulse tra	in input	
s			Maximum/minimum frequency setting, frequency jump operation, external thermal relay input selection, polarity reversible operation,
Operation specifications			automatic restart after instantaneous power failure operation, electronic bypass operation, forward/reverse rotation prevention,
cati	On a set is set if		remote setting, brake sequence, second function, third function, multi-speed operation, original operation continuation at
cific	Operational f	unctions	instantaneous power failure, stop-on-contact control, load torque high speed frequency control, droop control, regeneration avoidance, slip compensation, operation mode selection, offline auto tuning function, online auto tuning function, PID control,
be			computer link operation (RS-485), motor end orientation *1, machine end orientation *2, pre-excitation, notch filter, machine analyzer
n s			1, easy gain tuning, speed feed forward, and torque bias 1
atio	Output signal		The following signals can be assigned to Pr. 190 to Pr. 196 (output terminal function selection): inverter running, inverter running/start
era	Open colle		command on, up-to-frequency, instantaneous power failure/undervoltage, overload warning, output frequency (speed) detection,
g	(5 terminal		second output frequency (speed) detection, third output frequency (speed) detection, regenerative brake pre-alarm, electronic thermal relay function pre-alarm, PU operation mode, inverter operation ready, output current detection, zero current detection, PID
	Relay outp	ut (2 terminals)	urenna relay function pre-arann, Po operation mode, inverter operation ready, output current detection, Pro- lower limit, PID upper limit, PID forward rotation reverse rotation output, electronic bypass MC2, electronic bypass MC2
			bypass MC3, orientation complete *1, orientation fault *1, brake opening request, fan fault output, heatsink overheat pre-alarm,
			deceleration at an instantaneous power failure, PID control activated, motor temperature detection *4, PM sensorless vector control
	Operating	a status	*5, during retry, PID output interruption, during 0V voltage calibration *5, position control preparation ready *1, DC feeding, life alarm,
		J	fault output 1, 2, 3 (power-off signal), power savings average value update timing, current average monitor, maintenance timer alarm, remote output, forward rotation output *1, reverse rotation output *1, low speed detection, torque detection, regenerative status
			atamin, remote output, ionward rotation output", reverse rotation output", iow speed detection, ion up detection, regenerative status output ", start-time tuning completion, in-position completion "I, alarm output and fault output. Alarm code of the inverter can be
			output (4 bit) from the open collector.
	14/b	en used with the FR-	In addition to above, the following signal can be assigned to Pr.313 to Pr. 319 (extension output terminal function selection): control circuit
		AY, FR-A7AR (option)	capacitor life, main circuit capacitor life, cooling fan life, inrush current limit circuit life. (only positive logic can be set for extension
			terminals of the FR-A7AR)
	Pulse tra		50kpps
	For mete	r rain output	The following signals can be assigned to Pr. 54 FM terminal function selection (pulse train output) and Pr. 158 AM terminal function selection (analog output): output frequency, motor current (steady or peak value), output voltage, frequency setting, operation speed, motor
		2.4kHz: one terminal)	torque, converter output voltage (steady or peak value), electronic thermal relay function load factor, input power, output power, load
		output	meter, motor excitation current, reference voltage output, motor load factor, motor temperature *4, power saving effect, regenerative
	(Max. 1	0VDC: one terminal)	brake duty, PID set point, PID measured value, motor output, torque command, torque current command, and torque monitor.
			The following operating status can be displayed: Output frequency, motor current (steady or peak value), output voltage, frequency optimac grand motor control and an analysis of the status of the s
	Operation		setting, running speed, motor torque, overload, converter output voltage (steady or peak value), electronic thermal relay function load factor, input power, output power, load meter, motor excitation current, position pulse, cumulative energization time, orientation
Б	panel	Operating status	status *1, actual operation time, motor load factor, cumulative power, energy saving effect, cumulative saving power, regenerative
Indication	(FR-DU07)		brake duty, PID set point, PID measured value, PID deviation, inverter I/O terminal monitor, input terminal option monitor 6, output
dic	Parameter		terminal option monitor *6, option fitting status *7, terminal assignment status *7, torque command, torque current command, feed back pulse *1, motor output, SSCNET III communication status *3, motor temperature *4
_	unit (FR-		Fault definition is displayed when a fault occurs, the output voltage/current/requency/cumulative energization time right before the
	PU07)	Fault record	fault cours and past 8 fault records are stored.
		Interactive guidance	Function (help) for operation guide *7
			Overcurrent during acceleration, overcurrent during constant speed, overcurrent during deceleration, overvoltage during
			acceleration, overvoltage during constant speed, overvoltage during deceleration, inverter protection thermal operation, motor
			protection thermal operation, heatsink overheat, instantaneous power failure occurrence, undervoltage, input phase loss *10, motor overload, output side earth (ground) fault overcurrent, output short circuit, main circuit element overheat, output phase loss, external
_		Protective function	overload, output side earni (ground) autovercurrent, output sinor circuit, nami circuit element overneat, output prase loss, externar thermal relay operation *10, PTC thermistor operation *10, option fault, parameter error, PU disconnection, retry count excess *10,
	tective/		CPU fault, operation panel power supply short circuit, 24VDC power output short circuit, output current detection value excess *10,
	ning ction		inrush current limit circuit fault, communication fault (inverter), USB fault, opposite rotation deceleration fault*10, analog input fault,
lan			brake transistor alarm, speed deviation large 1110, overspeed 1110, position error large 1110, signal loss detection 1110, brake
			sequence fault*10, encoder phase error *1*10, loss of synchronism *10
		Warning function	Fan fault, overcurrent stall prevention, overvoltage stall prevention, regenerative brake pre-alarm *10, electronic thermal relay function pre-alarm, PU stop, maintenance timer alarm *10, parameter write error, copy operation error, operation panel lock,
		training function	password locked, parameter copy alarm, speed limit indication
Ħ	Surrounding	air temperature	-10°C to +50°C (non-freezing)
Environment	Ambient hum	idity	90%RH maximum (non-condensing)
onr	Storage temp	erature *8	-20°C to +65°C
ivin	Atmosphere		Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt etc.)
	Altitude/vibra	tion	Maximum 1000m above sea level for standard operation. 5.9m/s ² or less *9 at 10 to 55Hz (directions of X, Y, Z axes)
Ш	/ 1111000/110/0		


*1 Available only when the option (FR-A7AP/FR-A7AL) is mounted.
*2 Available only when the option (FR-A7AL) is mounted.
*3 Available only when the option (FR-A7NS) is mounted.
*4 Available only when the option (FR-A7AZ) is mounted and SF-V5RUDDDDT/A is used.
*5 Available only when the option (FR-A7AD) is mounted.

- *6 Can be displayed only on the operation panel (FR-DU07).
 *7 Can be displayed only on the parameter unit (FR-PU07).
 *8 Temperature applicable for a short period in transit, etc.
 *9 2.9m/s² or less for the 160K or higher.
 *10 This protective function is not available in the initial status.
 *11 For PM sensorless vector control, refer to *page 209*.

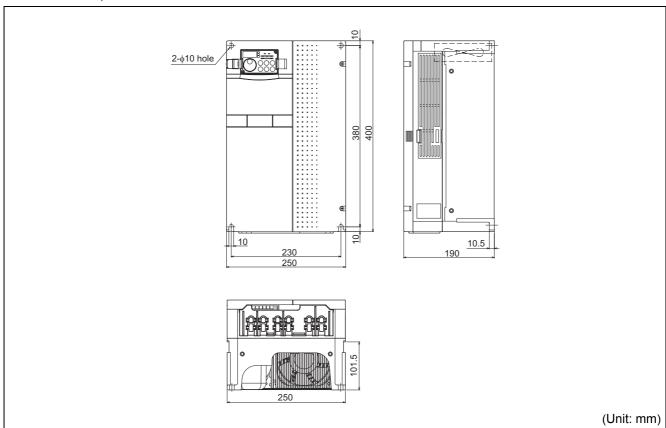

6.4.1 Inverter outline dimension drawings

•FR-A720-0.4K, 0.75K



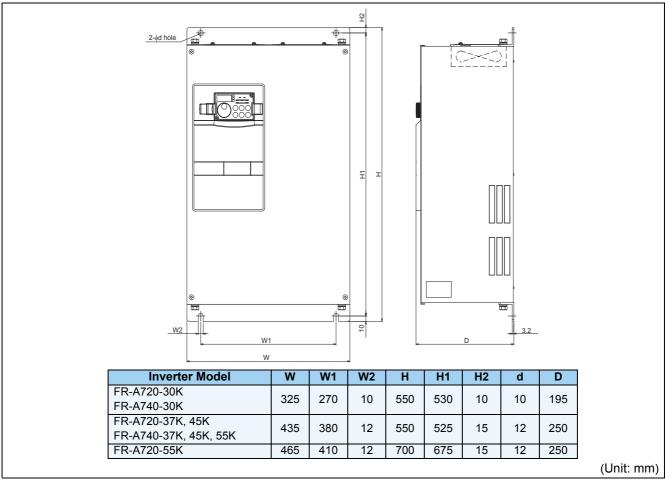
•FR-A720-1.5K, 2.2K, 3.7K

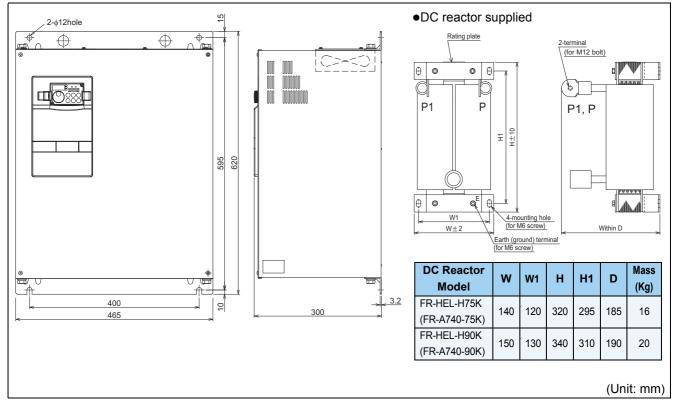
•FR-A740-0.4K, 0.75K, 1.5K, 2.2K, 3.7K

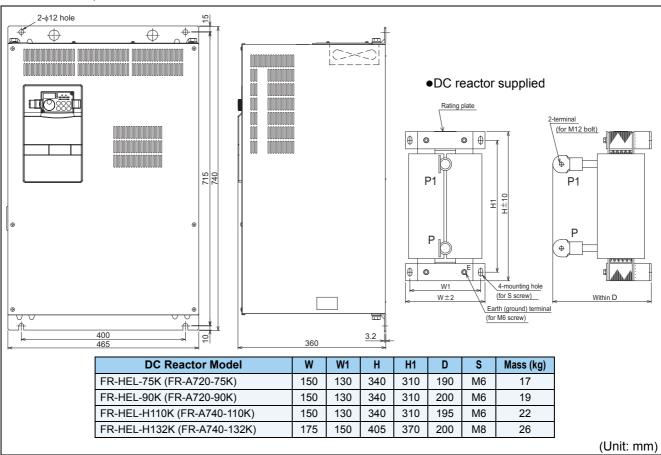


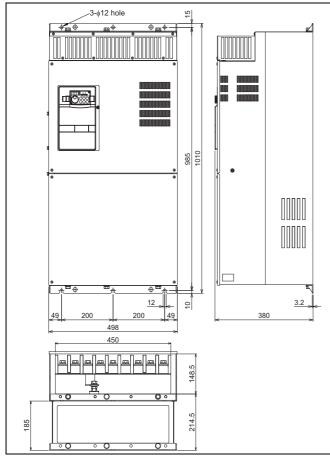
•FR-A720-5.5K, 7.5K, 11K •FR-A740-5.5K, 7.5K, 11K, 15K

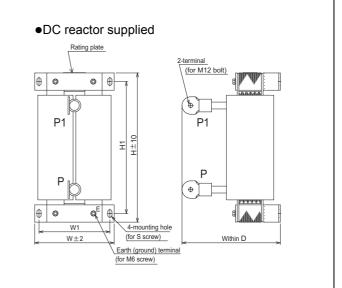
•FR-A720-15K, 18.5K, 22K


•FR-A740-18.5K, 22K


Outline dimension drawings

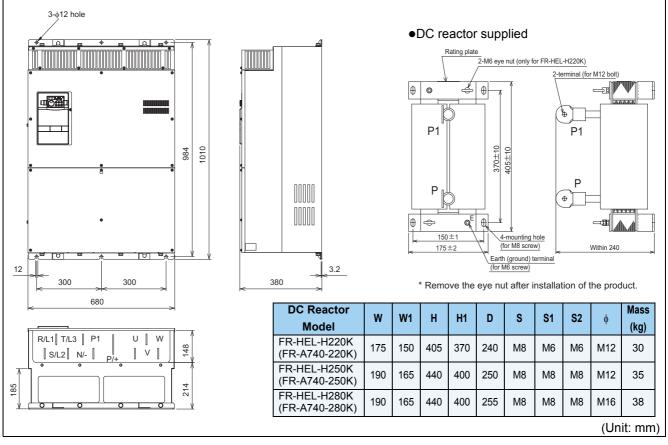

•FR-A720-30K, 37K, 45K, 55K •FR-A740-30K, 37K, 45K, 55K


•FR-A740-75K, 90K

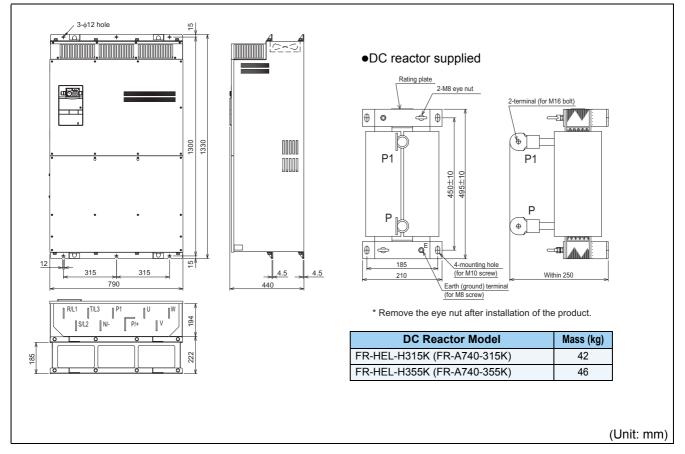


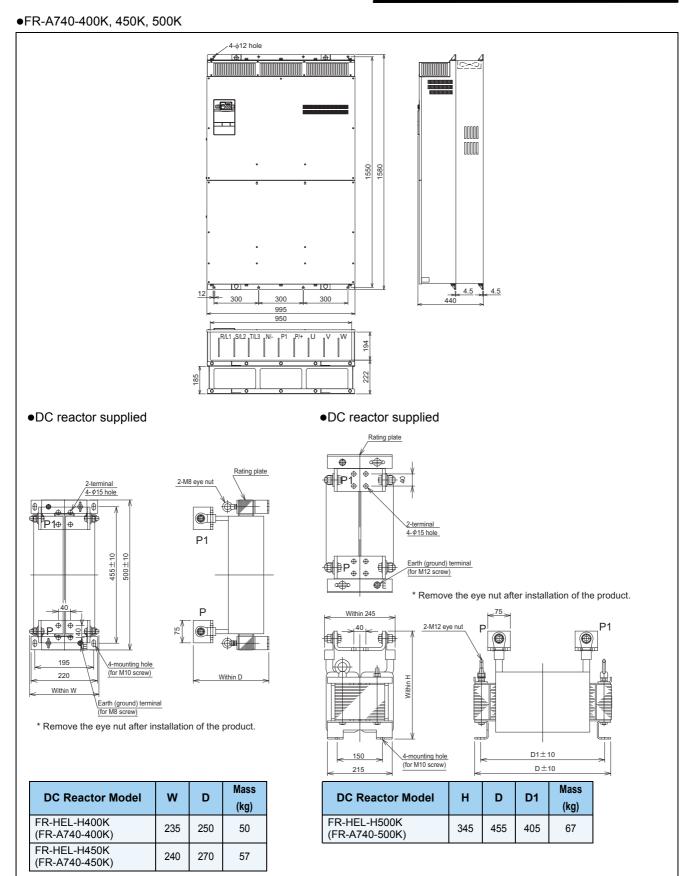
•FR-A720-75K, 90K •FR-A740-110K, 132K

•FR-A740-160K, 185K

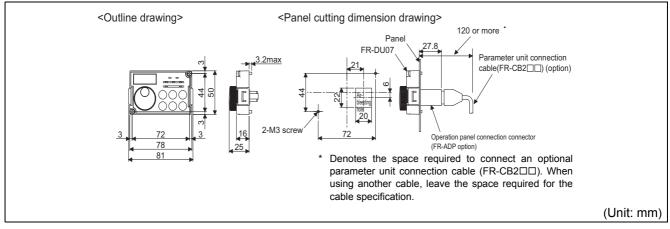


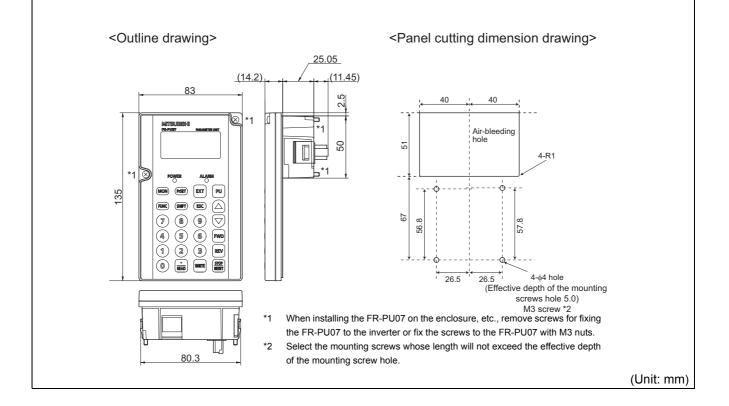
DC Reactor Model	w	W1	Н	H1	D	S	Mass (kg)
FR-HEL-H160K (FR-A740-160K)	175	150	405	370	205	M8	28
FR-HEL-H185K (FR-A740-185K)	175	150	405	370	240	M8	29


(Unit: mm)

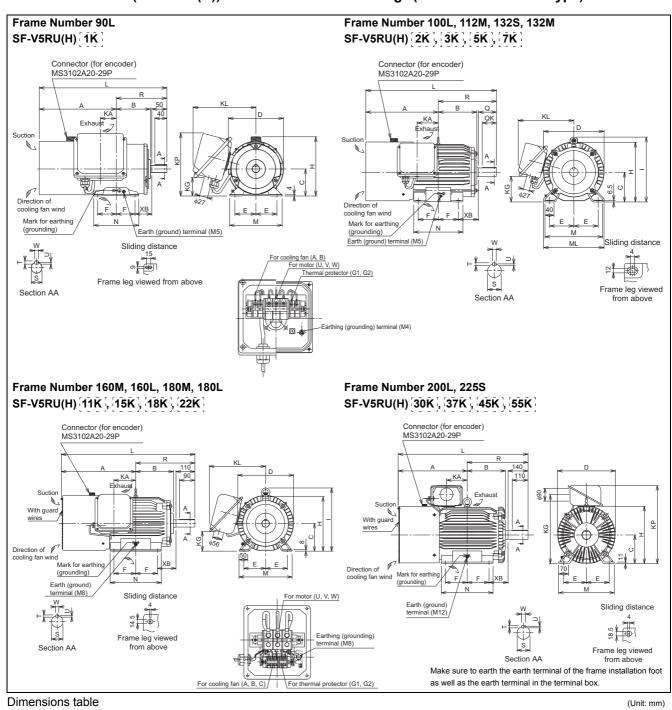


•FR-A740-220K, 250K, 280K


•FR-A740-315K, 355K



(Unit: mm)

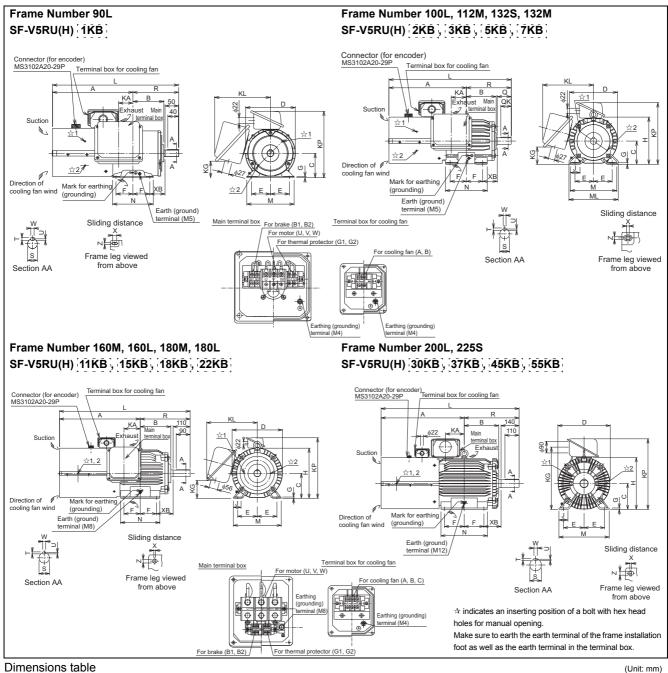

• Operation panel (FR-DU07)

• Parameter unit (option) (FR-PU07)

6.4.2 Dedicated motor outline dimension drawings Dedicated motor (SF-V5RU(H)) outline dimension drawings (standard horizontal type)

SF-V5RU	SF-V5RU	SF-V5RU □K3	SF-V5RU	Frame No.												N	lotor												Tern	ninal So Size	crew
		LING	LIN4	NO.	(kg)	Α	В	С	D	Е	F	н	Ι	KA	KG	KL(KP)	L	М	ML	Ν	ХВ	Q	QK	R	S	Т	U	w	U,V,W	A,B,(C)	G1,G2
1	-	—	—	90L	24	256.5	114	90	183.6	70	62.5	198	—	53	65	220(210)	425	175		150	56	—		168.5	24j6	7	4	8	M6	M4	M4
2	1	—	—	100L	33	284	128	100	207	80	70	203.5	230	65	78	231	477	200	212	180	63	60	45	193	28j6	7	4	8	M6	M4	M4
3	2	1	_	112M	41	278	135	112	228	95	70	226	253	69	93	242	478	230	242	180	70	60	45	200	28j6	7	4	8	M6	M4	M4
5	3	2		132S	52	303	152	132	266	108	70	265	288	75	117	256	542	256	268	180	89	80	63	239	38k6	8	5	10	M6	M4	M4
7	5	3	1	132M	62	322	171	132	266	108	89	265	288	94	117	256	580	256	268	218	89	80	63	258	38k6	8	5	10	M6	M4	M4
11	7	5	2	160M	99	412	198	160	318	127	105	316	367	105	115	330	735	310	I	254	108		I	323	42k6	8	5	12	M8	M4	M4
15	11	7	3	160L	113	434	220	160	318	127	127	316	367	127	115	330	779	310	I	298	108		I	345	42k6	8	5	12	M8	M4	M4
18	_	-		180M	138	438.5	225.5	180	363	130.5	120.5	350	410	127	139	352	790	335		285	121	_		351.5	1946	9	5.5	14	M8	M4	M4
22	15	11		100101	160	430.3	223.3	100	303	135.5	120.0	555	410	127	155	332	130	555		205	121			331.3	4010	5	5.5	t	IVIO	IVI4	111-4
_	18	15	5	180L	200	457.5	242.5	180	363	139.5	139.5	359	410	146	139	352	828	335	-	323	121	_	-	370.5	55m6	10	6	16	M8	M4	M4
30	—	—	7	200L	238	402 E	267.5	200	406	150	152.5	401	_	145	407	(546)	000	200		361	133			40E E	60m6	11	7	18	M10	M4	M4
37, 45	22, 30	18, 22	—	200L	255	403.0	207.5	200	400	139	102.5	401	_	145	407	(346)	909	390		301	133	_		420.0	00/110		'	10	IVI I U	11/14	11/14
55	37	30	11, 15	225S	320	500	277	225	446	178	143	446	-	145	533	(592)	932	428	—	342	149	_	—	432	65m6	11	7	18	M10	M4	M4

Note) 1. Install a motor of the frame number 180 or higher on a floor by keeping its axis horizontal.


 Leave an enough clearance between the fan suction port and wall to ensure adequate cooling. Also, check that the ventilation direction of a fan is from the opposite load side to the load side.

3 The size difference of top and bottom of the shaft center height is $\frac{0}{0.5}$

4 The 400V class motor has -H at the end of its type name.

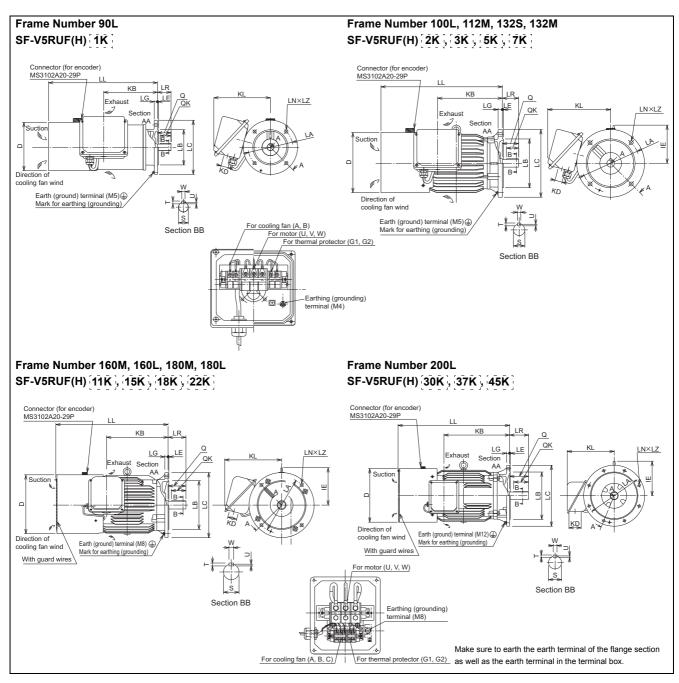
•Dedicated motor (SF-V5RU(H)) outline dimension drawings (standard horizontal type with brake)

Dimensions table

SF-V5RU	SF-V5RU	SF-V5RU	SF-V5RU	Frame	Mass											Mo	otor													Shi	aft Er	nd			Term	inal S	Screw	Size
□КВ	□ K1B	□ К3В	□ K4B	No.	(kg)	Α	в	С	D	Е	F	G	Н	Т	J	KA	KD	KG	KL	KP	L	Μ	ML	Ν	Х	ХВ	Ζ	Q	QK	R	S	Т	U	w	U,V,W	A,B,(C)	G1,G2	B1,B2
1	-	Ι	—	90L	29	296.5	114	90	183.6	70	62.5	4		-	—	53	27	65	220	245	465	175		150	15	56	9	50	40	168.5	24j6	7	4	8	M6	M4	M4	M4
2	1	Ι	-	100L	46	333.5	128	100	207	80	70	6.5		-	40	65	27	78	231	265	526.5	200	212	180	4	63	12	60	45	193	28j6	7	4	8	M6	M4	M4	M4
3	2	1	_	112M	53	355	135	112	228	95	70	6.5	I		40	69	27	93	242	290	555	230	242	180	4	70	12	60	45	200	28j6	7	4	8	M6	M4	M4	M4
5	3	2	-	132S	70	416	152	132	266	108	70	6.5		-	40	75	27	117	256	329	655	256	268	180	4	89	12	80	63	239	38k6	8	5	10	M6	M4	M4	M4
7	5	3	1	132M	80	435	171	132	266	108	89	6.5			40	94	27	117	256	329	693	256	268	218	4	89	12	80	63	258	38k6	8	5	10	M6	M4	M4	M4
11	7	5	2	160M	140	522.5	198	160	318	127	105	8			50	105	56	115	330	391	845.5	310	I	254	4	108	14.5	110	90	323	42k6	8	5	12	M8	M4	M4	M4
15	11	7	3	160L	155	544.5	220	160	318	127	127	8			50	127	56	115	330	391	889.5	310	I	298	4	108	14.5	110	90	345	42k6	8	5	12	M8	M4	M4	M4
18	—	Ι		180M	185	568.5	20E E	190	262	120 E	100 5				50	107	E G	120	252	428	020	225		285	4	121	14.5	110	00	2E1 E	106	0		14	140	MA	ма	M4
22	15	11	-	TOUIVI	215	000.0	220.0	100	303	139.3	120.0	0	_	_	50	127	50	139	352	420	920	335	_	200	4	121	14.0	110	90	301.0	4010	9	0.0	14	IVIO	1114	11/14	11/14
—	18	15	5	180L	255	587.5	242.5	180	363	139.5	139.5	8			50	146	56	139	352	428	958	335		323	4	121	14.5	110	90	370.5	55m6	10	6	16	M8	M4	M4	M4
30	_	—	7	200L	305	644.5	267.5	200	406	150	152.5	11			70	145	00	497		546	1070	300		361	4	133	19.5	140	110	125.5	60m6	11	7	19	M10	MA	ма	Ma
37, 45	22, 30	18, 22	_	200L	330	044.0	207.3	200	400	139	102.0				10	145	30	407		540	10/0	590		301	4	133	10.0	140	110	420.0	001110			10	WIU	11/4	1014	1014
55	37	30	11, 15	225S	395	659	277	225	446	178	143	11			70	145	90	533	Ι	592	1091	428		342	4	149	18.5	140	110	432	65m6	11	7	18	M10	M4	M4	M4

Note) 1. Install the motor on the floor and use it with the shaft horizontal.

2. Leave an enough clearance between the fan suction port and wall to ensure adequate cooling. Also, check that the ventilation direction of a fan is from the opposite load side to the load side.


3 The size difference of top and bottom of the shaft center height is $^{0}_{.0.5}$

4 The 400V class motor has -H at the end of its type name.

5. Since a brake power device is a stand-alone, install it inside the enclosure.

(This device should be arranged at the customer side.)

Dimensions table

Dinic	1001	5 tubi	0																										
SF-V5RU	SF-V5RU	SF-V5RU	SF-V5RU	Flange	Frame	Mass							Motor									S	haft En	ıd			Termin	nal Scre	w Size
F⊡K	FDK1	F⊟K3	F⊡K4	Number	No.	(kg)	D	IE	KB	KD	KL	LA	LB	LC	LE	LG	LL	LN	LZ	LR	Q	QK	S	т	U	w	U,V,W	A,B,(C)	G1,G2
1	-	-	-	FF165	90L	26.5	183.6	-	198.5	27	220	165	130j6	200	3.5	12	402	4	12	50	50	40	24j6	7	4	8	M6	M4	M4
2	1	-	-	FF215	100L	37	207	130	213	27	231	215	180j6	250	4	16	432	4	14.5	60	60	45	28j6	7	4	8	M6	M4	M4
3	2	1	-	FF215	112M	46	228	141	239	27	242	215	180j6	250	4	16	448	4	14.5	60	60	45	28j6	7	4	8	M6	M4	M4
5	3	2	-	FF265	132S	65	266	156	256	27	256	265	230j6	300	4	20	484	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4
7	5	3	1	FF265	132M	70	266	156	294	27	256	265	230j6	300	4	20	522	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4
11	7	5	2	FF300	160M	110	318	207	318	56	330	300	250j6	350	5	20	625	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4
15	11	7	3	FF300	160L	125	318	207	362	56	330	300	250j6	350	5	20	669	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4
18	_	—	—	FF350	180M	160	363	230	378.5	56	352	350	300j6	400	5	20	690	4	18.5	110	110	90	48k6	9	5.5	14	M8	M4	M4
22	15	11	-	FF330	100101	185	303	230	370.5	50	352	350	300j0	400	5	20	090	4	10.0	110	110	90	4010	9	5.5	14	IVIO	1014	1014
—	18	15	5	FF350	180L	225	363	230	416.5	56	352	350	300j6	400	5	20	728	4	18.5	110	110	90	55m6	10	6	16	M8	M4	M4
30		—	7	FF400	200L	270	406	255	485	90	346	400	350j6	450	5	22	823.5	Q	18.5	140	140	110	60m6	11	7	18	M10	M4	M4
37.45	22, 30	18, 22	_	11400	200L	290	-+00	200	-+00	30	340	+00	330j0	+30	5	22	023.5	0	10.5	1-+0	140	110	00/110		· ·	10	WITU	1114	1014

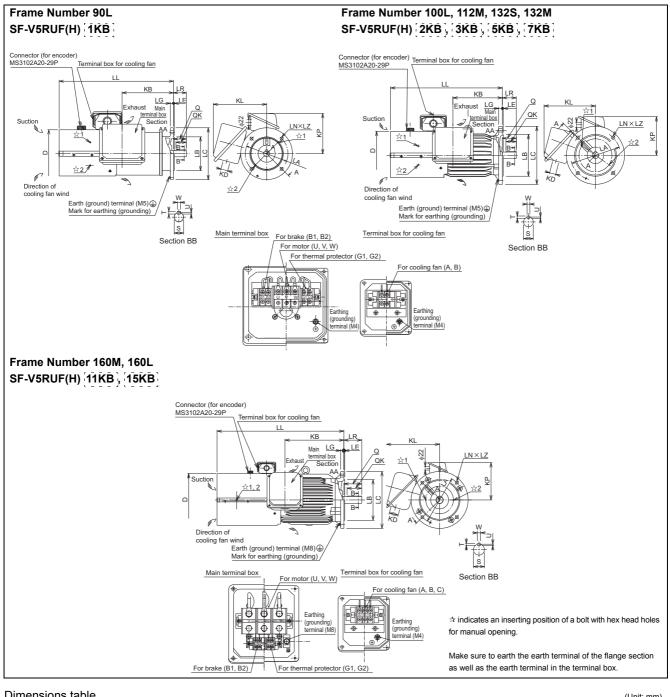
Note) 1. A motor of the frame number 180 or higher cannot be installed to the ceiling (by keeping its axis vertical).

For use under the shaft, the protection structure of the cooling fan is IP20.

2. Leave an enough clearance between the fan suction port and wall to ensure adequate cooling.

Also, check that the ventilation direction of a fan is from the opposite load side to the load side.

3 The size difference of top and bottom of the shaft center height is $\frac{0}{0.5}$


4 The 400V class motor has -H at the end of its type name.

6

(Unit: mm)

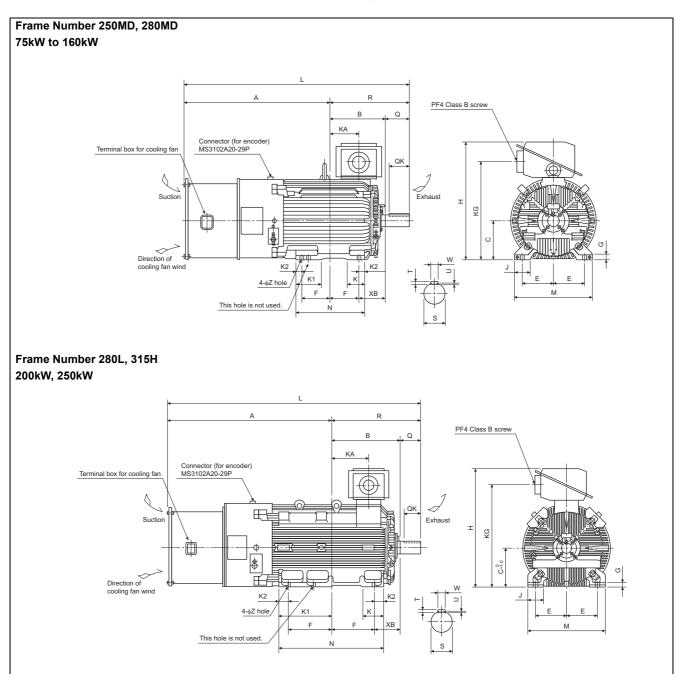
•Dedicated motor (SF-V5RU(H)) outline dimension drawings (flange type with brake)

Dimensions table

Dime	IISIOII	s labi	e																									((Unit: I	mm)
SF-V5RU	SF-V5RU	SF-V5RU	SF-V5RU	Flange	Frame	Mass							Motor									Sha	aft End				Ter	rminal S	Screw S	ize
FDKB	F □ K1B	F □ K3B	F□K4B	Number	No.	(kg)	D	KB	KD	KL	KP	LA	LB	LC	LE	LG	LL	LN	LZ	LR	q	QK	S	Т	J	w	U,V,W	A,B,(C)	B1,B2	G1,G2
1	-	-	-	FF165	90L	31.5	183.6	198.5	27	220	155	165	130j6	200	3.5	12	442	4	12	50	50	40	24j6	7	4	8	M6	M4	M4	M4
2	1	Ι	Ι	FF215	100L	50	207	213	27	231	165	215	180j6	250	4	16	481.5	4	14.5	60	60	45	28j6	7	4	8	M6	M4	M4	M4
3	2	1	Ι	FF215	112M	58	228	239	27	242	178	215	180j6	250	4	16	525	4	14.5	60	60	45	28j6	7	4	8	M6	M4	M4	M4
5	3	2		FF265	132S	83	266	256	27	256	197	265	230j6	300	4	20	597	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4	M4
7	5	3	1	FF265	132M	88	266	294	27	256	197	265	230j6	300	4	20	635	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4	M4
11	7	5	2	FF300	160M	151	318	318	56	330	231	300	250j6	350	5	20	735.5	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4	M4
15	11	7	3	FF300	160L	167	318	362	56	330	231	300	250j6	350	5	20	779.5	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4	M4

Note) 1. Install the motor on the wall and use it with the shaft horizontal.

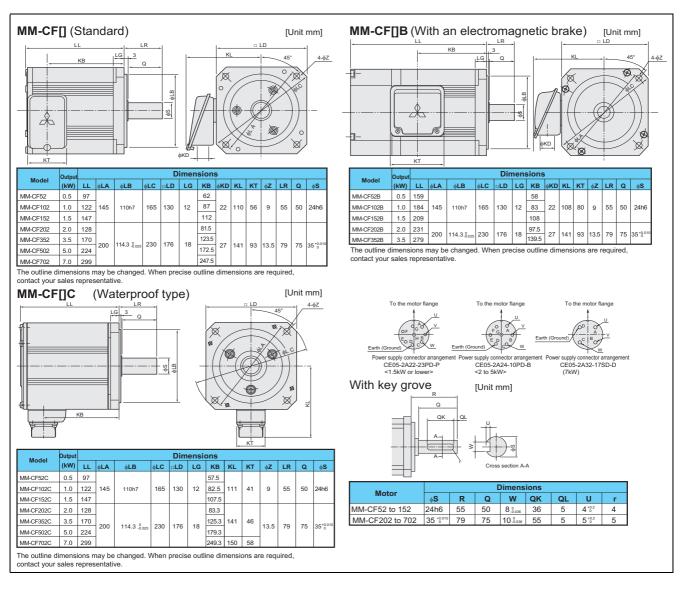
2. Leave an enough clearance between the fan suction port and wall to ensure adequate cooling.


Also, check that the ventilation direction of a fan is from the opposite load side to the load side.

3 The size difference of top and bottom of the shaft center height is $^{0}_{\text{-0.5}}$

4 The 400V class motor has -H at the end of its type name.

5. Since a brake power device is a stand-alone, install it inside the enclosure.


(This device should be arranged at the customer side.)

•Dedicated motor (SF-THY) outline dimension drawings (1500r/min series)

Dime	nsions	s table	;																								(Unit:	mm)
Output	Frame	Mass										Мо	tor											5	Shaft E	nd Siz	e	
Output	No.	(kg)	Α																KA	KG	q	QK	S	W	Т	U		
75	250MD	610	988.5	340.5	250	557	203	174.5	30	775	100	130	168	50	1471	486	449	482.5	24	168	157.5	635	140	110	¢75m6	20	12	7.5
90	250MD	660	988.5	340.5	250	557	203	174.5	30	775	100	130	168	50	1471	486	449	482.5	24	168	157.5	635	140	110	≬75m6	20	12	7.5
110	280MD	870	1049.5	397.5	280	607	228.5	209.5	30	845	110	130	181	40	1619	560	449	569.5	24	190	210.5	705	170	140	¢85m6	22	14	9
132	280MD	890	1049.5	397.5	280	607	228.5	209.5	30	845	110	130	181	40	1619	560	449	569.5	24	190	210.5	705	170	140	¢85m6	22	14	9
160	280MD	920	1049.5	397.5	280	607	228.5	209.5	30	845	110	130	181	40	1619	560	499	569.5	24	190	210.5	705	170	140	ø85m6	22	14	9
200	280L	1170	1210.5	416.5	280	652	228.5	228.5	30	885	110	160	160	75	1799	560	607	588.5	24	190	214.5	745	170	140	ø85m6	22	14	9
250	315H	1630	1343	565	315	717	254	355	35	965	130	175	428	80	2084	636	870	741	28	216	306	825	170	140	¢95m6	25	14	9

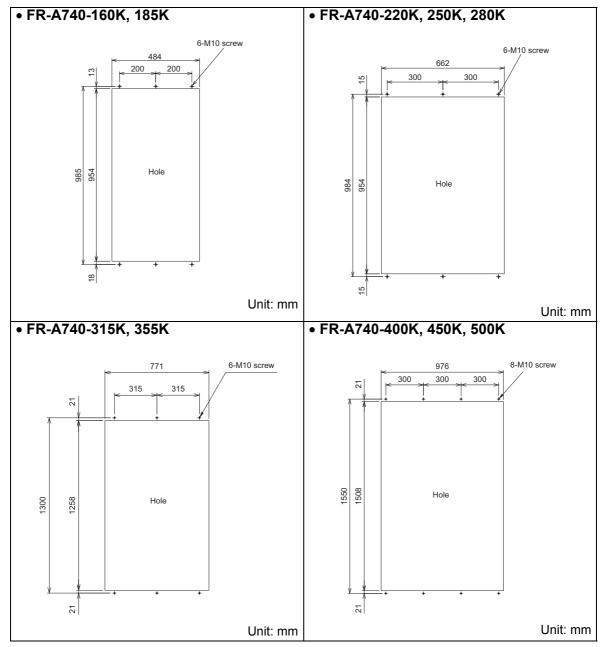
Note) The tolerance of the top and bottom of the center shaft height *C is $\frac{0}{0.5}$ for the 250 frame and $\frac{0}{1.0}$ for the 280 frame or more.

●IPM motor (MM-CF) outline dimension

6.5 Heatsink protrusion attachment procedure

When encasing the inverter in an enclosure, the generated heat amount in an enclosure can be greatly reduced by installing the heatsink portion of the inverter outside the enclosure. When installing the inverter in a compact enclosure, etc., this installation method is recommended.

6.5.1 When using a heatsink protrusion attachment (FR-A7CN)

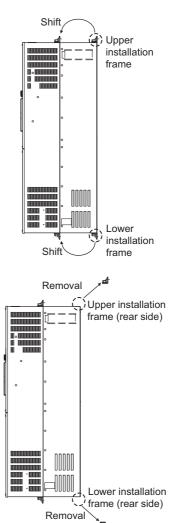

For the FR-A720-1.5K to 90K, FR-A740-0.4K to 132K, a heatsink can be protruded outside the enclosure using a heatsink protrusion attachment (FR-A7CN). (For the FR-A740-160K or higher, attachment is not necessary when the heatsink is to be protruded.)

For a panel cut dimension drawing and an installation procedure of the heatsink protrusion attachment (FR-A7CN) to the inverter, refer to a manual of "heatsink protrusion attachment".

6.5.2 Protrusion of heatsink of the FR-A740-160K or higher

(1) Panel cutting

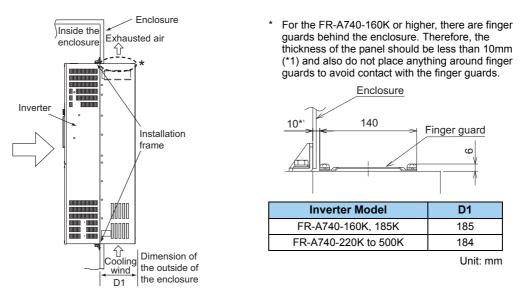
Cut the panel of the enclosure according to the inverter capacity.



(2) Shift and removal of a rear side installation frame

• FR-A740-160K to 280K

One installation frame is attached to each of the upper and lower parts of the inverter. Change the position of the rear side installation frame on the upper and lower sides of the inverter to the front side as shown on the right. When changing the installation frames, make sure that the installation orientation is correct.



• FR-A740-315K or higher

Two installation frames each are attached to the upper and lower parts of the inverter. Remove the rear side installation frame on the upper and lower sides of the inverter as shown on the right.

(3) Installation of the inverter

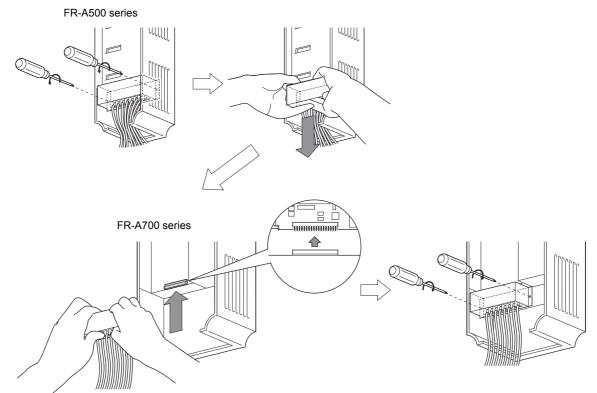
Push the inverter heatsink portion outside the enclosure and fix the enclosure and inverter with upper and lower installation frame.

= CAUTION =

- Having a cooling fan, the cooling section which comes out of the enclosure cannot be used in the environment of water drops, oil, mist, dust, etc.
- Be careful not to drop screws, dust etc. into the inverter and cooling fan section.

APPENDICES

Appendix 1 For customers who are replacing the older model with this inverter


Appendix 1-1 Replacement of the FR-A500 series

(1) Instructions for installation

- 1) Removal procedure of the front cover was changed. (with screws) Please note. (Refer to page 6.)
- 2) Removal procedure of the operation panel was changed. (with screws) Please note. (Refer to page 6.)
- 3) Plug-in options of the A500 series are not compatible.
- 4) Operation panel (FR-DU04) cannot be used.
- 5) Setup software (FR-SW0-SETUP/FR-SW1-SETUP) cannot be used.

(2) Wiring instructions

1) The control circuit terminal block can be used for the FR-A700 series without removing wiring. Note that the wiring cover (0.4K to 22K) is not compatible.

(Note that the relay output 2 (A2, B2, C2) specific for the FR-A700 series cannot be used with the FR-A500 series terminals.)

(3) Instructions for continuous use of the FR-PU04 (parameter unit)

- 1) For the FR-A700 series, many functions (parameters) have been added. When setting these parameters, the parameter name and setting range are not displayed. User initial value list and user clear of the HELP function cannot be used.
- 2) For the FR-A700 series, many protective functions have been added. These functions activate, but all faults are displayed as "Fault 14". When the faults history has been checked, "E.14" appears. Added faults display will not appear on the parameter unit.
- 3) User initial value setting cannot be used.
- 4) User registration/clear (user group 2) cannot be used.
- 5) Parameter copy/verification function cannot be used.

(4) Parameter resetting

The setup software (FR Configurator) is useful for the FR-A700.

(5) Main differences and compatibilities with the FR-A500(L) series

I	tem	FR-A500(L)	FR-A700
Added functions	Control method	V/F control Advanced magnetic flux vector control	V/F control Advanced magnetic flux vector control Real sensorless vector control Vector control (used with a plug-in option FR-A7AP/FR-A7AL) PM sensorless vector control
	PID control	PID action set point setting (<i>Pr. 133</i>)	Addition of "9999" to PID action set point (<i>Pr. 133</i>) setting (a value input from terminal 2 is a set point)
	Intelligent mode selection	Pr. 60	Parameter number change (Pr. 60 Energy saving control selection) (Pr. 292 Automatic acceleration/deceleration)
Changed	Motor poles	Number of motor poles (Pr. 81 , Pr. 144)	Setting the number of motor poles in Number of motor poles (<i>Pr. 81</i>) automatically changes the speed setting switchover (<i>Pr. 144</i>) setting.
functions	User group	User group 1 (16 parameters), User group 2 (16 parameters) (<i>Pr.160</i> , <i>Pr.173 to Pr.175</i>)	User group (16 parameters) only Setting methods were partially changed (<i>Pr</i> .160, <i>Pr</i> .172 to <i>Pr</i> .173)
	Communication option	Performing the parameter clear or all parameter clear (H5A96 or HAA99) from the DeviceNet communication option (FR-A5ND) clears the <i>Pr</i> : <i>345</i> and <i>Pr</i> : <i>346</i> settings.	Performing the parameter clear or all parameter clear (H5A96 or HAA99) from the DeviceNet communication option (FR-A7ND) does not clear the <i>Pr. 345</i> and <i>Pr. 346</i> settings.
Deleted	User initial value setting (Pr. 199)	Available	Not available Substitutable with the copy function of the operation panel (FR-DU07)
Deleted functions	Long wiring mode	Pr. 240 setting 10, 11	Setting is not necessary (<i>Pr. 240</i> settings "10" and "11" were cleared)
	Program operation	Pr. 200 to Pr. 231	Function was cleared
Term	inal block	Removable terminal block	Removable terminal block Upward compatibility (FR-A500 terminal block mountable)
PU		FR-PU04, DU04	FR-PU07 FR-DU07 FR-PU04 (Some functions, such as parameter copy, are unavailable.) FR-DU04 unavailable
			n option (incompatible)
Plug-	in options	Computer link, relay output option FR-A5NR	Built into the inverter (RS-485 terminals, relay output 2 points)
Install	ation size	dimensions. For the FR-A740-11K, 15K, an optional intercom · Heatsink protrusion attachment is not compatible	

Appendix 1-2 Replacement of the FR-A200 <EXCELLENT> series

Instructions for installation

• When using the mounting holes of the FR-A200(E) series, FR-A5AT (intercompatibility attachment) is necessary.

Appendix 2 Specification comparisons between the PM sensorless vector control and the induction motor control

ltem		sensorless vector control (MM-CF)	Induction motor control
Applicable motor	IPM motors other motor capacity mu capacity.) *	F series (0.5 to 7.0kW) <i>(Refer to page 189.)</i> than the MM-CF are also applicable with tuning. (The ust be equal to or one rank lower than the inverter	Induction motor (The motor capacity must be equal to or one rank lower than the inverter capacity.)
Starting torque	High frequency superposition control Current	200% (with 1.5kW or lower MM-CF: 200%, with 2.0kW or higher: 150%)	200% (0.4 to 3.7K) 150% (5.5K or higher) Under Real sensorless vector control or
	synchronization operation	50%	vector control
Zero speed	High frequency superposition control	Available (Use a one rank higher inverter for zero-speed 200%)	Available under Real sensorless vector
	Current synchronization operation	Not available	control or vector control
Carrier	High frequency superposition control	6kHz (<i>Pr.</i> 72 = "0 to 9"), 10kHz (<i>Pr.</i> 72 = "10 to 13"), or 14kHz (<i>Pr.</i> 72 = "14, 15") (Even if 10kHz or higher is set, the frequency will be 6kHz in the low-speed range. 2kHz is not selectable.)	55K or lower: a value between 0.75kHz
frequency	Current synchronization operation	2kHz (<i>Pr.</i> 72 = "0 to 5"), 6kHz (<i>Pr.</i> 72 = "6 to 9"), 10kHz (<i>Pr.</i> 72 = "10 to 13"), or 14kHz (<i>Pr.</i> 72 = "14, 15") (Even if 10kHz or higher is set, the frequency will be 6kHz in the low-speed range.)	and 14.5kHz 75K or higher: 0.75kHz to 6kHz
Automatic restart after instantaneous power failure	No startup waiting The use with the r function is recomm	time. regeneration avoidance function or with the retry	Startup waiting time exists.
Startup delay	Startup delay of a	bout 0.1s (for magnetic pole position detection)	No startup delay (when the online auto tuning at start is disabled)
Commercial power supply operation of the motor	Cannot be driven	by the commercial power supply.	Can be driven by the commercial power supply (other than vector control dedicated motor)
Operation during coasting	While the motor is	coasting, potential is generated across motor terminals.	While the motor is coasting, potential is not generated across motor terminals.
Torque control	Not available		Available under Real sensorless vector control or vector control
Position control	High frequency superposition control	Available (Sensorless)	Available under vector control
	Current synchronization operation	Not available rol on an IPM motor other than MM-CF, contact your sales re	

* To perform PM sensorless vector control on an IPM motor other than MM-CF, contact your sales representative.

— CAUTION =

_

· Before wiring, make sure that the motor is stopped. Otherwise you may get an electric shock.

· Never connect an IPM motor to the commercial power supply.

No slippage occurs with an IPM motor because of its characteristic. If an IPM motor, which took over an induction motor, is driven at the same speed as for the induction motor, the rotation speed of the IPM motor becomes faster by the amount of the induction motor's slippage. Adjust the speed command to run the IPM motor at the same speed as the induction motor, as required.

Appendix 3 Instructions for UL and cUL compliance

(Conforming standard UL 508C, CSA C22.2 No.14)

(1) General Precaution

CAUTION - Risk of Electric Shock -

The bus capacitor discharge time is 10 minutes. Before starting wiring or inspection, switch power off, wait for more than 10 minutes, and check for residual voltage between terminal P/+ and N/- with a meter etc., to avoid a hazard of electrical shock.

ATTENTION - Risque de choc électrique -

La durée de décharge du condensateur de bus est de 10 minutes. Avant de commencer le câblage ou l'inspection, mettez l'appareil hors tension et attendez plus de 10 minutes.

(2) Environment

Before installation, check that the environment meets following specifications.

Surrounding Air Temperature *1	Constant torque: -10°C to + 50°C (non-freezing)						
Ambient humidity	90%RH or less (non-condensing)						
Storage temperature	-20°C to + 65°C						
Ambience Indoors (No corrosive and flammable gases, oil mist, dust and dirt.)							
Altitude, vibration	Altitude, vibration Below 1000m, 5.9m/s ² or less*2 at 10 to 55Hz (directions of X, Y, Z axes)						

*1 Surrounding Air Temperature is a temperature measured at a measurement position in an enclosure. Ambient Temperature is a temperature outside an enclosure.

*2 2.9m/s² or less for the 160K or higher

(3) Installation

This inverter is UL-listed as a product for use in an enclosure.

Design an enclosure so that the inverter surrounding air temperature, humidity and atmosphere satisfy the specifications. (*Refer to page 191.*)

Branch Circuit Protection

For installation in the United States, Class RK5, Class J, Class CC, Class L, Class T or any faster acting fuses or UL 489 Molded Case Circuit Breaker (MCCB) must be provided, in accordance with the National Electrical Code and any applicable local codes.

For installation in Canada, Class RK5, Class J, Class CC, Class L, Class T or any faster acting fuses or UL 489 Molded Case Circuit Breaker (MCCB) must be provided, in accordance with the Canada Electrical Code and any applicable provincial codes.

For the FR-A740-75K to 500K, Class RK5, Class J, Class CC, Class L or Class T fuses or UL 489 Molded CaseCircuit Breaker (MCCB) must be provided.

FR-	A720-DDK	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
	Rated fuse voltage(V)		0.70	1.0	2.2	0.7	0.0	-	V or m	-	10.0			0/	τv	
	Without power															
Fuse	factor improving	15	20	30	40	60	80	150	175	200	225	300	350	400	500	500
maximum	reactor															
allowable	With power															
rating (A)*	factor improving	15	20	20	30	50	70	125	150	200	200	250	300	350	400	500
	reactor															
Molded ca	se circuit															
breaker (M	ICCB)	15	15	20	25	40	60	80	110	150	175	225	250	350	400	500
maximum	allowable	15	15	20	25	40	00	00	110	150	175	225	230	550	400	500
rating (A)*																
FR-	A720-DDK	75	90	1												
Rated fuse	Rated fuse voltage(V)		or more													
	Without power															
Fuse	factor improving															
maximum	reactor															
allowable	With power	1		1												

allowable rating (A)*	With power factor improving reactor	600	700
Molded ca breaker (M maximum rating (A)*	ICCB)	700	800

FR-	A740-DDK	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
Rated fuse	voltage(V)							480	V or m	ore						
Fuse maximum	Without power factor improving reactor	6	10	15	20	30	40	70	80	90	110	150	175	200	250	300
allowable rating (A)*	With power factor improving reactor	6	10	10	15	25	35	60	70	90	100	125	150	175	200	250
Molded case circuit breaker (MCCB) maximum allowable rating (A)*		15	15	15	15	20	30	40	50	70	90	100	125	150	200	250

Maximum allowable rating by US National Electrical Code.

Exact size must be chosen for each installation. Class RK5 or Class T or Class I fuses or III, 489 Molded Case Circuit Breaker (MCCB) must be provided

Class RK5	Liass RK5 or Class 1 or Class L fuses or OL 489 Molded Case Circuit Breaker (MCCB) must be provided.														
FR-/	A740-🗆🗆K	75	90	110	132	160	185	220	250	280	315	355	400	450	500
Rated fuse	voltage(V)							500V c	or more	1					
Fuse maximum	Without power factor improving reactor	_	_	_	_	_	_	_	_	_	_	_	_	_	
allowable rating (A)*	With power factor improving reactor	300	350	400	500	600	700	800	900	1000	1100	1200	1350	1500	1800
Molded case circuit breaker (MCCB) maximum allowable rating (A)*		350	450	500	600	800	800	1000	1200	1200	1200	1600	1600	2000	2000

Maximum allowable rating by US National Electrical Code. Exact size must be chosen for each installation.

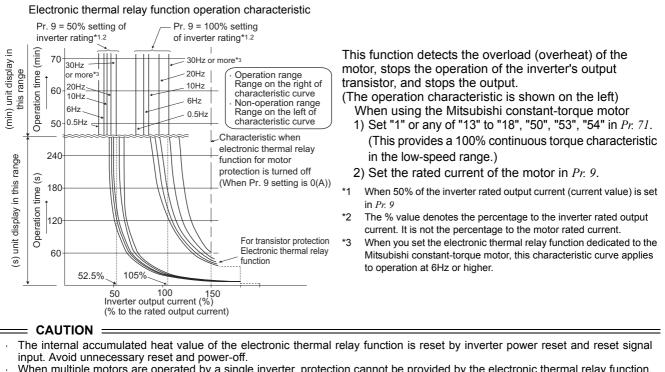
(4) Wiring of the power supply and motor

For wiring the input (R/L1, S/L2, T/L3) and output (U, V, W) terminals of the inverter, use the UL Listed copper, stranded wires (rated at 75°C) and round crimping terminals. Crimp the crimping terminals with the crimping tool recommended by the terminal maker.

(5) Short circuit ratings

• 200V class

Suitable For Use in A Circuit Capable Of Delivering Not More Than 100kA rms Symmetrical Amperes, 264V Maximum. • 400V class


55K or lower

Suitable For Use in A Circuit Capable Of Delivering Not More Than 100kA rms Symmetrical Amperes, 528V Maximum. 75K or higher

Suitable For Use in A Circuit Capable Of Delivering Not More Than 100kA rms Symmetrical Amperes, 550V Maximum.

(6) Motor overload protection

When using the electronic thermal relay function as motor overload protection, set the rated motor current to *Pr*: 9 *Electronic thermal O/L relay*.

When multiple motors are operated by a single inverter, protection cannot be provided by the electronic thermal relay function. Install an external thermal relay to each motor.

When the difference between the inverter and motor capacities is large and the setting is small, the protective characteristics of the electronic thermal relay function will be deteriorated. In this case, use an external thermal relay.

- A special motor cannot be protected by the electronic thermal relay function. Use the external thermal relay.
- Electronic thermal relay may not function when 5% or less of inverter rated current is set to electronic thermal relay setting.
- Motor over temperature sensing is not provided by the drive.
- The use of the FR-A700 with an IPM motor is not certified by the UL not cUL.

Appendix 4 Instructions for compliance with the EU Directives

The EU Directives are issued to standardize different national regulations of the EU Member States and to facilitate free movement of the equipment, whose safety is ensured, in the EU territory.

Since 1996, compliance with the EMC Directive that is one of the EU Directives has been legally required. Since 1997, compliance with the Low Voltage Directive, another EU Directive, has been also legally required. When a manufacturer confirms its equipment to be compliant with the EMC Directive and the Low Voltage Directive, the manufacturer must declare the conformity and affix the CE marking.

• The authorized representative in the EU

The authorized representative in the EU is shown below.

Name: Mitsubishi Electric Europe B.V.

Address: Gothaer Strasse 8, 40880 Ratingen, Germany

Note

We declare that this inverter conforms with the EMC Directive in industrial environments and affix the CE marking on the inverter. When using the inverter in a residential area, take appropriate measures and ensure the conformity of the inverter used in the residential area.

(1) EMC Directive

We declare that this inverter conforms with the EMC Directive and affix the CE marking on the inverter.

• EMC Directive: 2004/108/EC

• Standard(s): EN61800-3:2004 (Second environment / PDS Category "C3")

Note: First environment

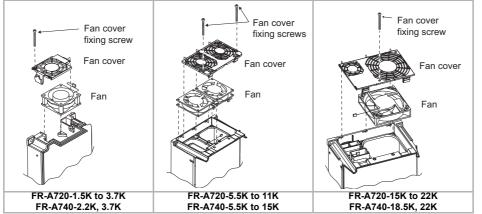
Environment including residential buildings. Includes buildings directly connected without a transformer to the low voltage power supply network which supplies power to residential buildings.

Second environment

Environment including all buildings except buildings directly connected without a transformer to the low voltage power supply network which supplies power to residential buildings.

Note

Set the EMC filter valid and install the inverter and perform wiring according to the following instructions.


- * The inverter is equipped with a built-in EMC filter. Set the EMC filter valid. (The EMC filter is invalid when shipped from the factory. (The FR-A720-0.4K and 0.75K are always valid.) For details, *refer to page 10*.)
- * Connect the inverter to an earthed power supply.
- * Install a motor and a control cable written in the EMC Installation Manual (BCN-A21041-204) according to the instruction.
- * The cable length between the inverter and the motor is 5 m maximum.
- * Confirm that the inverter conforms with the EMC Directive as the industrial drives application for final installation.
- * This inverter does not conform with the EU Directives when used with an IPM motor.

(2) Low Voltage Directive

We have self-confirmed our inverters as products compliant to the Low Voltage Directive (Conforming standard EN 50178) and affix the CE marking on the inverters.

Outline of instructions

- * Do not use an earth leakage current breaker as an electric shock protector without connecting the equipment to the earth. Connect the equipment to the earth securely.
- * Wire the earth terminal independently. (Do not connect two or more cables to one terminal.)
- ^t Use the cable sizes on *page 14* under the following conditions.
- Surrounding air temperature: 40°C maximum
- If conditions are different from above, select appropriate wire according to EN60204 Appendix C TABLE 5.
- * Use a tinned (plating should not include zinc) crimping terminal to connect the earth (ground) cable. When tightening the screw, be careful not to damage the threads.
- For use as a product compliant with the Low Voltage Directive, use PVC cable whose size is indicated on page 14.
- * Use the moulded case circuit breaker and magnetic contactor which conform to the EN or IEC Standard.
- * When using an earth leakage current breaker, use a residual current operated protective device (RCD) of type B (breaker which can detect both AC and DC). If not, provide double or reinforced insulation between the inverter and other equipment, or put a transformer between the main power supply and inverter.
- * Use the inverter under the conditions of overvoltage category II (usable regardless of the earth (ground) condition of the power supply), overvoltage category III (usable with the earthed-neutral system power supply, 400V class only) and pollution degree 2 or lower specified in IEC60664.
 - · To use the inverter of 30K or higher (IP00) under the conditions of pollution degree 2, install it in the enclosure of IP 2X or higher.
 - · To use the inverter under the conditions of pollution degree 3, install it in the enclosure of IP54 or higher.
 - To use the inverter of 22K or lower (IP20) outside of an enclosure in the environment of pollution degree 2, fix a fan cover with fan cover fixing screws enclosed.

- * On the input and output of the inverter, use cables of the type and size set forth in EN60204 Appendix C.
- * The operating capacity of the relay outputs (terminal symbols A1, B1, C1, A2, B2, C2) should be 30VDC, 0.3A. (Relay outputs have basic isolation from the inverter internal circuit.)
- * Control circuit terminals on page 9 are safely isolated from the main circuit.
- * Environment

	During Operation	In Storage	During Transportation
Surrounding air temperature	-10°C to +50°C	-20°C to +65°C	-20°C to +65°C
Ambient humidity	90% RH or less	90% RH or less	90% RH or less
Maximum altitude	1000m	1000m	10000m

* This inverter does not conform with the EU Directives when used with an IPM motor.

MEMO

*The manual number is given on the bottom left of the back cover.

Print Date	*Manual Number	Revision
Jun. 2005	IB(NA)-0600225ENG-A	First edition
Aug. 2005	IB(NA)-0600225ENG-B	Addition • FR-A720-75K, 90K • FR-A740-0.4K to 160K
Sep. 2005	IB(NA)-0600225ENG-C	Addition FR-A740-185K to 500K Compatible with the FR-A7AP · Orientation control · Encoder feedback control · Vector control
Feb. 2007	IB(NA)-0600225ENG-D	Addition Pr. 539 Modbus-RTU communication check time interval Setting value "4" of Pr. 17 MRS input selection Setting values "10, 11" of Pr. 495 Remote output selection Modification Change in specification of a voltage/current input switch and addition of a switch to the 3.7K or lower.
Mar. 2010	IB(NA)-0600225ENG-E	Addition Pr. 296 Password lock level Pr. 297 Password lock/unlock Setting value "1" of Pr. 419 Position command source selection Setting value "2" of Pr. 804 Torque command source selection Failsafe Modification 4.6 Check first when you have a trouble Instructions for compliance with the EU Directives
Jun. 2011	IB(NA)-0600225ENG-F	Addition • 3.2.7 Energy saving operation for fans and pumps (Pr. 14, Pr. 60) • Setting value "2" of Pr. 850 Brake operation selection • Setting values "11, 13" of Pr. 270 Stop-on contact/load torque high-speed frequency control selection • Motor temperature detection signal (Y55) • Motor temperature monitor • Compliance with the Radio Waves Act (South Korea)
Mar. 2015	IB(NA)-0600225ENG-G	Addition Pr. 147 Acceleration/deceleration time switching frequency Setting value "9999" of Pr. 551 PU mode operation command source selection PM sensorless vector control Setting values "10, 11" of Pr. 154 Voltage reduction selection during stall prevention operation Pr. 870 Speed detection hysteresis Pr. 994 Droop break point gain, Pr. 995 Droop break point torque Pr. 999 Automatic parameter setting Modification Setting range of Pr. 885 Regeneration avoidance compensation frequency limit value UL standards (changes in sentences regarding fuse selection for 75K or higher and motor overload protection)

For Maximum Safety

- Mitsubishi inverters are not designed or manufactured to be used in equipment or systems in situations that can affect or endanger human life.
- When considering this product for operation in special applications such as machinery or systems used in passenger transportation, medical, aerospace, atomic power, electric power, or submarine repeating applications, please contact your nearest Mitsubishi sales representative.
- Although this product was manufactured under conditions of strict quality control, you are strongly advised to install safety devices to prevent serious accidents when it is used in facilities where breakdowns of the product are likely to cause a serious accident.
- Please do not use this product for loads other than three-phase induction motors.

HEAD OFFICE: TOKYO BUILDING 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

MODEL	FR-A700 INSTRUCTION MANUAL (BASIC)
MODEL CODE	1A2-P09

Specifications subject to change without notice.